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Abstract  
We present a graphical approach to classical and intuitionistic modal logics, 
which provides uniform formalisms for expressing, analysing and comparing 
their semantics. This approach uses the flexibility of graphical calculi to express 
directly and intuitively the semantics for modal logics. We illustrate the benefits 
of these ideas by applying them to some familiar cases of classical and 
intuitionistic multi-modal logics. 
 
Keywords: Modal logics; classical modal logics; intuitionistic modal logics; 
possible world semantics; graphical formulations; graphical calculi.  

 
Resumo 

Apresentamos uma abordagem gráfica para as lógicas modais clássica e 
intuicionista, capaz de fornecer formalismos uniformes para expressar, analisar 
e comparar suas respectivas semânticas. Tal abordagem utiliza a flexibilidade 
dos cálculos gráficos para expressar, direta e intuitivamente, a semântica das 
lógicas modais. Ilustramos os benefícios dessas ideias aplicando-as a alguns 
casos conhecidos de lógicas multimodais clássica e intuicionista. 

 
Palavras-chave: Lógicas modais; lógicas modais clássicas; lógicas modais 
intuicionistas; semântica de mundos possíveis; formulações gráficas; calculus 
gráficos. 
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1.  Introduction 

 
We present a graphical approach to modal logics, which provides a flexible and 
uniform tool for expressing, analyzing and comparing possible-world 
semantics.1  

This graphical approach can be regarded as a version of diagrammatic 
reasoning, where we can express formulas by diagrams, which can be 
manipulated so as to unveil properties (like consequence and satisfiability). 
Graphical representations and transformations, having precise syntax and 
semantics, give proof methods [F3V 06]. An interesting feature of this graphical 
approach is its two-dimensional notation providing pictorial representations that 
support visual manipulations [CL 95, CL 96]. These ideas have been adapted to 
refutational reasoning [VV 11] and applied to some versions of multi-modal 
logics [VVB 14].  
Modal logics and graphs are closely connected. Kripke frames can be presented 
via directed labeled graphs for the accessibility relation of each modality 
[BRV 95]; it is natural to represent that a is related to b via relation r by an r-
arrow from a to b. Intuitionistic modal logic is an interesting subject [FS 81, 
PS 86]: there seems to be little consensus on the appropriate approach to its 
semantics, as indicated by the diversity of Kripke-like semantics proposed (see 
[Ewd 86, Smp 94] and references therein).  
We provide graphical calculi, having diagrams as terms and whose rules 
transform diagrams, capturing the semantics of the modal operators and 
accessibility relations. These calculi provide uniform and flexible formalisms 
where one can explore Kripke-like semantics for modal logics: valid formulas, 
consequence, etc. We illustrate these ideas by applying them to classical modal 
logics [BRV 95] and to versions of intuitionistic modal logics [Smp 94, 
Ewd 86].  

We will consider a modal language ML, given by 2 sets: PL, of propositional 
letters, and RN, of 2-ary relation symbols [CP 08]. Its set Φ of formulas is 
generated by the following grammar (where p  PL):  

 

                                           
1 Previous versions of these ideas have been presented at LSFA conferences [VVB 15, VV 15].
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Negation ¬ is defined as usual: ¬  abbreviates   .  

We now introduce informally some basic ideas about our approach to 
modalities.2 Graphical reasoning involves manipulating diagrams (for formulas).  

 
 
The next example introduces a graphical approach to consequence.  
 
Example 1.1 (Formula consequence). We can show graphically that r  is 

a consequence of r () as follows. 
(RhS) We represent r  by a page and manipulate it, obtaining page R: 
  

 
 
(LhS) We represent r () by a page and manipulate it, obtaining page S as 
follows:  

 
() We now compare pages R and S:  

 

                                           
2 These and other ideas will be formulated more precisely in Sct. 2: Graphical Reasoning.
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This node translation  preserves arcs and input nodes. 
We thus have r  * R and r () * S with homomorphism : R  S.  
We use 

c
 (or overbar) for complementation: w --- 

c
 represents that formula  

does not hold at w; note that c is not a formula, we will call it an expression.3 
One can also establish consequence by refutation, as the next example illustrates. 
  
Example 1.2 (Satisfiable set). To show graphically that the expression set {r p, 
(r (pq)) 

c
 } is satisfiable, we present it by the following page Q  

 

 
 
1. Page Q converts to the following page Q’  
 

 
 
2. From this page Q’ we obtain the natural structure N as follows:4 
 

  

 
3. One can see that in N, the identity assignment satisfies the arcs p --- y and 

 as well as the arc with complemented expression.  
Thus, set {r p, (r (pq)) 

c
 } is satisfied at state x of this structure N.  

This example establishes that r (pq) is not a consequence of r p. 
  

                                           
3 See 2.1: Graphical Languages.  

4 We use wiggly arrows for drawing structures. 
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2.  Graphical Reasoning 

 
We now present graphical reasoning: languages (in 2.1), some concepts and 
results (in 2.2) and calculus rules (in 2.3).5  
 

 

2.1.  Graphical Languages 

 
We now introduce graphical languages: syntax and semantics. 

A graphical language GL is characterized by two sets of symbols: Sb1, of 
unary symbols, and Sb2, of binary symbols.6 It involves an infinite set Nd of 
node names. We will use x, y and z for the first 3 nodes of  Nd. 

The (mutually recursive) syntax (and intuitive meanings) is as follows. 
(E) Expressions: unary symbols t  Sb1, pages, books and their complements 
(set of states).  
(a) Arcs: unary and binary, with expressions and 2-ary symbols, respectively. 
1. pair w | E, drawn w --- E (w pertains to expression E).7 
2. triple u L v, drawn as an L-arrow from u to v (v is L-accessible from u). 
() A sketch consists of a set of arcs over nodes (restrictions on states).8  
(D) A draft is sketch with finite sets of nodes and arcs (restriction on states). 
(P) A page consists of a draft with a node marked as input (set of states). 
(B) A book is a finite set of pages (set of states). 
A sketch  = N;A is proper iff N   (i. e.  has some node).  
We also use single-node pages for expressions: the page of expression E is Pe(E) 
:= E --- x^, while the page of expression-pair (E,F) is the page Pp(E,F] := 
E --- x^  --- F c (cf. Examples 1.1 and 1.2, in Sct. 1).  

                                           
5 For more details see, e. g. [VV 11, VVB 14] and references therein. 

6 For the applications to modal logics, in Scts. 3 and 4, Sb1will consist of formulas.  

7 We use ‘pertains’ in an intuitive sense, see Example 2.2: Draft and page). 

8 Finiteness will be important for effectiveness, but some concepts are natural for sketches.  
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Example 2.1 (GL-structure). Consider the following diagram: 

 

         

 
 
The next example introduces some semantical ideas. 
 

 

 
 
Assignment g satisfies every arc of D.  
 

 
 
So, g satisfies draft D. 
Now, consider page P = (D;u), with underlying draft P = D and input node u. 

Example 2.2 
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State a = ug belongs to the behaviour of page P.  
We define behave our as follows.  
(P): For a page P, with underlying draft P and input node u, its behaviour is the 
set [P]S consisting of the values ug for the assignments g satisfying P. (B): For a 
book, we set [B]S:= {P∈B [P]S}. 
Thus, for the empty book { }, [{ }]S = , and for a singleton book {P}, [{P}]S = 
[P]S. 

We define the extension [E]S of expression E as follows. For a unary symbol 
t  Sb1, it is given by the structure: [t]S := tS. If E is a page or a book, we use its 
behaviour: [E]S := [E]S. We set [Ec]S :=  M\ [E]S. 

 
Remark 2.1 (Special pages). Consider a GL-structure S with universe M. (\): For 
an expression E, [x^ --- Ec]S = M \ [x^ --- E]S. (): For expressions E and F, 
[E --- x^ --- F]S = [x^ --- E]S   [x^ --- F]S. (): For a label L and an 
expression E, a  [x x^-L y --- E]S  iff, for some b with (a,b) ∈  LS, b  [y^ -
-- E]S.9  
 
Corollary 2.1 (Expression pages). For a GL-structure S: [Pe(E)]S = [E]S and 
[Pp(E,F]]S = [E]S \ [F]S. 
Proof. By Remark 2.1: Special pages. 
 
2.2.  Graphical Concepts and Results 

 
We now examine some graphical concepts and results. 

We compare sketches by morphisms and pages by homomorphisms. A 
morphism is a node mapping that preserves arcs. A homomorphism is a 
morphism of underlying drafts that preserves input nodes. 

 
Example 2.3 (Morphism, homomorphism). A morphism  : C --> D is as 
follows: 

                                           
9 Recall that x, y and z are the first 3 nodes of Nd. 
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So,  is a homomorphism from (C;x’) to (D;u), but not from (C;x’) to (D;x). 

We now define covering between pages and books. For pages: Q covers P 
(noted P  Q) iff there is a homomorphism from Q to P. Book H covers page P 
(noted P  H) iff some page Q  H covers P. For books: H covers G (noted 
G  H) iff H covers every page P  G. (In Example 1.1, S  R.)  

Note that the empty book { } is covered by any book, and G ={ } whenever 
G  { }. 

A morphism transfers satisfying assignments by composition (see Fig. 1). 
 

Lemma 2.1 (Transfers). (-->): Given a morphism  : D --> , for any assignment 
g satisfying  in S, the composite g ·  satisfies D in S. (): If P  Q, then [P]S 
 [Q]S; if P  H, then [P]S  [H]S; and, if G  H, then [G]S  [H]S.  

Proof. Clear: (-->) is immediate and yields ().  

 
We will use ‘+’ for addition of arcs (and nodes). 
We wish to glue a page Q = (Q; v) onto a node w of a page P = (P; u). For 

this purpose, we take a copy Q’ of Q having no node in common with P, and 
identify node v’ to w, obtaining page Q”. The glued page PwQ is defined as 
(P + Q” ; u).10  

                                           
10 For instance, in Example 1.1 (Formula consequence), we have S = PvQ , with the following 

pages P := u^-r v ---  and Q :=w^ ---  . 
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The next example introduces conflict by page witness. 
 

Example 2.4 (Page witness). Consider the following draft D: 
 

 
 
We consider two kinds of witness at a node w of a sketch  = N;A. 

(E) Expression witness: expression E with 1-ary arcs E --- w --- Ec  A. 
(P) Page witness: page P = (P; u), for which there is a morphism  : P -->  with 
w = uμ and w --- Pc  A. 

The zero objects are as follows. A sketch is zero iff it has a witness. A page 
is zero iff its underlying draft is zero. A book is zero iff all its pages are zero. For 
instance, page Q’ in Example 1.2 (Satisfiable set) is not zero, and draft D in 
Example 2.4 (Page witness) is zero. 

 
Corollary 2.2 (Conflicts). A zero sketch is unsatisfiable. A zero page or book has 
empty extension in every model.  
Proof. By Lemma 2.1: Transfers.  
 
Remark 2.2 (Finiteness). (): Given drafts C and D and a function  : NC  ND, 
one can effectively decide whether  is a morphism from C to D. (Z): One can 
effectively decide whether a draft, a page or a book is zero. (): One can 
effectively decide covering between pages or books. 
 
Example 2.5 (Natural structure). Consider the following page P:  
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Thus, u is in the behaviour of P in N: u  [P]N.  
 
2.3 Graphical Calculi 

 
A graphical calculus has rules for manipulating expressions. Some rules are 
special: the elimination rules hinge on the semantics of the operators, other rules 
involve properties of relations. The following rules, however, are general: in 
each one of these rules, both sides have the same extension in every structure.  
The singleton rules convert a page P to its singleton book { P } and vice-versa 
(cf. 2.1). The promotion rule converts an expression E to its page Pe (E) = x^ ---
 E (cf. 2.1). The zero erase rule (Z) erases a zero page (cf. 2.2). The alternative 

expansion rule (|) expands a page P to the 2-page book { P + w|E,P + w|E
c 

}. 

 
Corollary 2.3 (Derived conversions). The following shift conversions are 
derived.  
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Proof. By rules alternative expansion (|), zero erase (Z) and the singleton rule.  

The complement rules eliminate double complement and move complement 
inside (as in De Morgan laws). Table 1 gives the 3 complement rules.  

 
The structural rules eliminate an arc whose expression is a page (by gluing, cf. 
2.2) or a book (cf. 2.1). Table 2 gives the 2 structural rules.  
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We often wish to consider restricted frames. We now introduce rules for 
capturing some properties of a relation: 

 

 

 

 
We will illustrate how these rules are used in 3.2 and 4.1.11  
It may be convenient to have logical relations like square  and diversity 

∂.12 As the meaning of  is M  M, we can eliminate it by erasing -arcs. We 
do not eliminate ∂, but we can handle it by the 2 rules: erase a page with a ∂-loop 
and expand a page P with nodes u and v to the book {P’,P + u ∂ v }, where page 
P’ is obtained from P by identifying nodes u and v (see also [VVB 15]).  

 
Remark 2.3 (Graphical calculi). Each graphical calculus is sound and complete 
for the corresponding structures.13  

In the sequel, we will apply this graphical machinery to modal logics: 
classical ones (in Sct. 3) and intuitionistic ones (in Sct. 4), with language ML (cf. 
Sct. 1). In each case, we will formulate a graph language where we can represent 
formulas by expressions, to be manipulated by appropriate meaning-preserving 
elimination rules, so as to establish validity and consequence. We use the 
expression pages in 2.1: Graphical Languages. If we can convert Pe(c) to the 

                                           
11 We can also handle irreflexive, serial, dense and confluent relations [VVB 15]. 

12 We can use these relations for particular modalities (see 3.2: Special Modalities). 

13 For more details about graphical calculi see, e. g. [VV 11, VVB 14] and references therein. 
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empty book { }, then formula  is valid; otherwise, it is not valid: the natural 
construction (as in Example 2.5: Natural structure) will give a counter-model. To 
show that formula  is a consequence of , we proceed similarly with page 
Pp(,]. One can also establish consequence directly by converting Pe() and 
Pe() to books G and H, respectively, with G  H (cf. Lemma 2.1: Transfers). 

 
 

3 Classical Modal Logics 

 
We now consider classical modal logics: basic logic (in 3.1) and extensions (in 
3.2).  
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3.1 Basic Classical Modal Logic 

 
We now consider basic classical modal logic: with unrestricted Kripke frames.  

 

 

 

 
Then, we have GLc-expressions with the appropriate extensions (cf. Remark 2.1: 
Special pages and Corollary 2.1: Expression pages).  
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Thus, we can eliminate logical symbols by means of the 6 classical elimination 
rules given in Table 3. 

 
Example 1.1 (Formula consequence) shows that r  is a classical consequence 
of r ().  

 
Example 3.1 (Classical consequence via refutation). We can show graphically 
that [r]  is a classical consequence of [r] (^) as follows.  



172 Paulo A. S. Veloso e Sheila R. M. Veloso

O que nos faz pensar, Rio de Janeiro, v.25, n.39, p.157-191, jul.-dez. 2016

 
 
 

 

 

 
 

3.2 Special Modalities 

 
We now consider some classical modal logics with restricted frames. For these 
cases, we use rules such as those in 2.3: Graphical Calculi. 

The next example illustrates how the transitive rule is used. 
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Example 3.2 (Transitive consequence). We can show graphically that r  is an 
r-transitive consequence of r r  as follows.  

 

 

 

 
We can also show graphically that r  is an r-reflexive consequence of  

(by means of the reflexive rule Rfl[r] in 2.3). 
Some interesting modalities are the universal one and difference: u satisfies 

E  iff, for some world v  W, v satisfies  and u satisfies D  iff, for some 
world v  W with u  v, v satisfies  [BRV 95]. We can handle them by the 
special relations in 2.3 (Graphical Calculi): it suffices to define E  :=    
and D  := ∂ . Then, we can show graphically that E  is a consequence of  
and that D  is a consequence of ¬  r . 
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A classical graphical calculus consists of the general graphical calculus rules 
(in 2.3: Graphical Calculi) together with the 6 classical elimination rules (in 
Table 3), extended by rules for properties of some relations. We thus have 
graphical calculi for classical modal logics like K, T, etc. [BRV 95]  

 
Theorem 3.1 (Classical graphical calculi). Each classical graphical calculus is 
sound and complete for the corresponding models.  

Proof. By Remark 2.3: Graphical calculi. 
 

 

4 Intuitionistic Modal Logics 

 
We now consider intuitionistic modal logics: flat (in 4.1) and graded (in 4.2). 
 
4.1 Flat Semantics 

 
We first examine flat semantics for intuitionistic modal logic, as in [Smp 94].  
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To reason graphically about flat semantics with a symbol wc for , we 

consider a graphical language GLf with Sb1 :=  and Sb2 := RN {wc}.14 We 
draw wc-arrows simply as . Then, we have GLf-expressions with the 
appropriate extensions (cf. Remark 2.1: Special pages).  

 

 

 
Thus, we can eliminate logical symbols by flat elimination rules. The 

elimination rules for , p, ,  and  are as in Table 3 (Classical elimination 
rules); those for  and [ ] appear in Table 4.  

                                           
14 A flat model C gives a GL -structure S with S := C and wc S := ≤. 
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Table 5 shows some flat derived conversions. 
  

 
 
Example 4.1 (Flat derivations). Formula ¬ r  is flat valid and [r]  is a flat 
consequence of [r] (^). We use the derived conversions in Table 5. 
 



177On Graphical Calculi for Modal Logics

O que nos faz pensar, Rio de Janeiro, v.25, n.39, p.157-191, jul.-dez. 2016

 
 
 

 

 

 

 
A PO frame is a flat frame R where special relation ≤ is a partial order on W. 

To reason about PO frames and models, we add the 3 rules: (Rfl[wc]), 
(Asm[wc]) and (Trn[wc]) (cf. 2.3: Graphical Calculi). 

A sketch, or page, of GLf is wc-reduced iff u = v, whenever it has arcs 
u  v. Every GLf-page can be contracted to a wc-reduced page. 
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The natural construction (cf. Example 2.5: Natural structure) applied to a 
proper GLc-sketch  (cf. 2.1: Graphical Languages) gives a flat model N[]. 

We can use this to show non-validity, as the next example illustrates. 
 

 

 

 

 

 

Example 4.2 
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Notice that N[R] is a PO frame. We can also see that the identity assignment 
1 : R  N[R] satisfies the arcs of R. Thus, N[R] is a PO model where, at world 
x, formula ¬rp  [r]¬p does not hold.  

To have monotonicity of satisfaction, one restricts PO models to birelational 
models by imposing 3 extra requirements, for each p  PL and r  RN (cf. 
[Smp 94]).  

 
To reason graphically about birelational models, we add the following 3 

birelational rules, for each propositional letter p  PL and relation symbol 
r  RN. 

 
Then, we can derive the following birelational formula transfer conversion: P 

+  --- u  u’ * P +  --- u  u’ --- . 15  

                                           
15 By expansion rule (|): case r  follows from (F1) and case [r]  follows from (Trn[wc]) 
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Example 4.3 (Birelational consequence). We can show graphically that ¬¬  is a 
birelational consequence of  as follows.  

 

 

 
We can show the birelational validity of the following formulas (cf. [Smp 94, 

p. 51, 52]): [r] ()  ([r][r]), [r] ()  (rr), ¬r , 
r ()  (rr), (r[r])  [r]() and ¬r  [r]¬.16  
Example 4.4 (Non birelational consequence). We can show that p is not a 
birelational consequence of ¬¬ p as follows. We have the following conversions: 

 

                                           
16 In fact, formula ¬r  is flat valid, cf. Example 4.1: Flat derivations. 
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The special binary relation ≤ of a flat structure may be symmetric. For such 
cases, we use the rule (Smt[wc]) (cf. 2.3: Graphical Calculi). We can thus show 
graphically that  is a symmetric birelational consequence of ¬¬ . We can 
similarly show that   ¬ is valid in symmetric birelational structures. 
We have a hierarchy of flat graphical calculi: the flat graphical calculus consists 
of the general graphical calculus rules (in 2.3: Graphical Calculi) together with 
the flat elimination rules, which can be extended by the rules for PO, birelational 
and symmetry.  
 
Theorem 4.1 (Flat graphical calculi). Each flat graphical calculus is sound and 
complete for the corresponding models.  
Proof. By Remark 2.3: Graphical calculi. 
 
4.2 Graded Semantics 

 
We now examine graded semantics for intuitionistic modal logic. The 
motivation comes from decoupling objects and stages, much as in [Ewd 86].  
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Consider the following pair of diagrams:  
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So, we can eliminate logical symbols by graded elimination rules. The 
elimination rules for , p, ,  and  are as in in Table 3 (Classical elimination 
rules); those for  and [ ] appear in Table 6.  

 

 

 
 
As in 4.1 (Flat Semantics), we also consider growing models.17  

                                           
17 Notice that these conditions are simpler and more intuitive than those in 4.1. 
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We can establish validity and consequence as in 4.1 (Flat Semantics), with 

 in lieu of  . We can show that [r]  is a graded consequence of 
[r] (^) as in Example 4.1 (Flat derivations), that ¬¬  is a growing graded 
consequence of  as in Example 4.3 (Birelational consequence), and also that  
is a symmetric growing graded consequence of ¬¬ .18  
We can also establish non-consequence much as in 4.1 (Flat Semantics), even 
though the natural construction is now more involved, as it involves quotients. 
The next example illustrates the main ideas.19  

 

                                           
18 Symmetric growing graded structures have constant universes, predicates and relations. 

19 For details, see [VV 15]. 
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We have a hierarchy of graded graphical calculi: the graded graphical calculus 
consists of the general graphical calculus rules (in 2.3: Graphical Calculi) 
together with the graded elimination rules and operational rules for eo, which 
can be extended by the PO, growing and symmetry rules.  
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We have a hierarchy of graded graphical calculi: the graded graphical calculus 
consists of the general graphical calculus rules (in 2.3: Graphical Calculi) 
together with the graded elimination rules and operational rules for eo, which 
can be extended by the PO, growing and symmetry rules.  
 

 
 
 

Theorem 4.2 (Graded graphical calculi). Each graded graphical calculus is sound 
and complete for the corresponding models.  
Proof. By Remark 2.3: Graphical calculi. 
 
 

5 Comparison of Modal Logics 

 
We now consider classical, flat and graded modal logics: the first two (in 5.1) 
and the other two (in 5.2); they have similar semantics for , p, ,  and . We 
will compare these modal logics graphically by means of the graph languages 
GLc (in 3.1: Basic Classical Modal Logic), GLf (in 4.1: Flat Semantics) and 
GLg (in 4.2: Graded Semantics). 
 

5.1 Classical and Flat Modal Logics 

 

We now compare graphically classical and flat modal logics. The result is not 
unexpected, but the development will serve to introduce the method to be used in 
5.2.  

Table 7 shows some formula representations in classical and flat semantics; 
other formulas have the same representations (cf. 3.1 and 4.1). 
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Consider the transformation FtCl: identify nodes u and v that are wc connected, 
i. e. such that u  v . It transforms formula representations from flat to classical 
semantics (cf. Table 7).  
 
Remark 5.1 (Flat and classical rules). The transformation FtCl maps flat rules to 
classical rules.  

GLc-expression F is associated to GLf-expression E (noted E  F) iff F is 
the result of applying FtCl to E. For derivations: F1,…,Fn, in GLc, is associated to 
E1, . . . ,En, in GLf, iff Ei  Fi, for i = 1,…,n. 

 
Lemma 5.1 (Flat and classical derivations). Every flat GLf-derivation f has an 
associated classical GLc-derivation c. 
Proof. By Remark 5.1: Flat and classical rules.  
 
Proposition 5.1 (Flat and classical formulas). If a modal formula  is flat (PO or 
birelational) derivable, then  is classically derivable.  
Proof. By Lemma 5.1: Flat and classical derivations.  

We now apply completeness of the classical and flat graphical calculi. 
  

Theorem 5.1 (Flat and classical semantics). If a modal formula  is flat (PO or 
birelational) valid, then  is classically valid.  
Proof. By Proposition 5.1 (Flat and classical formulas) and Theorems 3.1 
(Classical graphical calculi) and 4.1 (Flat graphical calculi). 
  
5.2 Flat and Graded Modal Logics 

 
We now compare graphically flat and graded modal logics. 

Table 8 shows some formula representations in flat and graded semantics; 
other formulas have the same representations (cf. 4.1 and 4.2). 
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Consider the replacement FtGr of wc by sc and eo. It transforms formula 

representations from flat to graded semantics (cf. Table 8). A GLg-expression is 
neat iff sc and eo occur only in parallel arcs. A GLg-derivation is neat iff it 
consists of neat expressions. 

Remark 5.2 (Graded and flat rules). The expressions in graded rules are neat. 
The replacement FtGr transforms flat rules to graded rules and vice-versa. 

GLg-expression F is similar to GLf-expression E (noted E ≈ F) iff F is the 
result of applying FtGr to E. For derivations: F1,…,Fn, in GLg, is similar to E1, . . 
. ,En, in GLf, iff Ei ≈ Fi, for i = 1,…,n. 

Lemma 5.2 (Flat and graded derivations). () Every flat GLf-derivation f 
has a neat graded GLg-derivation g similar to it, so that g is PO or growing if 
f is PO or birelational. () Every neat graded GLg-derivation g is similar to a 
flat GLf-derivation f (which is PO or birelational if g is PO or growing).  
Proof. By Remark 5.2: Graded and flat rules.  
Proposition 5.2 (Flat and graded formulas). A modal formula  is flat (PO or 
birelational) derivable iff  is graded (PO or growing) derivable.  
Proof. By Lemma 5.2: Flat and graded derivations.  
 
Theorem 5.2 (Flat and graded semantics). The same modal formulas hold in flat 
(PO or birelational) and graded (PO or growing) structures.  
Proof. By Proposition 5.2 (Flat and graded formulas) and Theorems 4.1 (Flat 
graphical calculi) and 4.2 (Graded graphical calculi). 
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6 Concluding Remarks 

 
We have presented a flexible and uniform graphical approach to pictorial 
formalisms for multi-modal logics where one can express, analyse and compare 
possible-world semantics, validities and consequences. 
Our approach explores the flexibility of graph calculi [VV 11, VVB 14] to 
express directly and graphically Kripke-like semantics of modal logics. This 
approach is uniform: once we have expressed the semantics (including properties 
of relations), we employ the corresponding (sound and complete) graph-
calculus.  
We have illustrated these ideas by applying them to some classical and 
intuitionistic modal logics (in Scts. 3: Classical Modal Logics and 4: 
Intuitionistic Modal Logics), which we have compared (in Sct. 5: Comparison of 
Modal Logics). We can also consider some variants as in [Smp94] (see [VV 15]) 
and some operations on relations (see [VVB 14, VVB 15]).  
We thus have a flexible and uniform approach for constructing rigourous and 
intuitive formalism for analysis and visual exploration of multi-modal logics. 
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