
On the Relationship Between
Well-orderings in Intuitionistic Type Theory

and Data Types Inductively Defined

Edward Hermann Haeusler and Oliver Bittel
1

1. Introduction

When defining a data type, one often uses the well-known equation
datatype = objects + operations. However, when the data-type is defined by
induction (lists, trees, stacks, etc.) it is usual to construct the objects using
the operations themselves on some initial elements. Martin-Lcef's type
theory (IIT) as an intuitionistic approch works by defining types in a way
that objects definition proceeds simultaneously with lhe operations definition.
Martin-Lcef has defined some well-known data-types (iist and natural
numbers). He also defined the type of well-ordered sets and showed how
to derive Natural numbers from this type. Nevertheless, it seemed to him
(cf. [Martin-Lcef 79]) that this well-ordered type was not much related to
computational aspects, since its main purpose was the definition of
transfinite induction, which apparently had nothing to do with computa­
tion. ln this work we show how to derive some well-known data-types,
namely trees, lists and stacks, from the already mentioned well-ordered
type.

ln section 2 we briefly present the type theory used in this work. ln section
3 we define the type of trees. ln section 4 we show how to see the list-type
defined by Martin-Lcef as an instance of the well-ordered type and point out
an interesting feature of IIT when we get stacks as an instance of it too. Finally
we conclude this work by asking a question : Is the well-ordered type enough
to specify ali the inductively defined data-types ?

1 PUC-Rio and GMD-Karlsruhe

O qiu nos faz pensar, ri' 4, Abn1 de 1991

62 Edward Hermann Haeusler and Oliver Bittel

2. ITT : an overview

The main idea of ITT is to formalize constructive reasoning. This is
achieved by writing a kind of calculus and giving some possible interpreta­
tions to it, but not necessarily « semantics ». The part concerned with the
calculus is built from some atomic elements called propositions. The other
syntatic elements are combinations of propositions built up from operators
or contructors. Thus the interpretations are given by interpreting the atomic
elements and the severa! ways of combining them with the use of such
constructors. Martin-Lcef calls these interpretations « judgments ». They will
be succintly described below.

The basic propositions are « A set » and « a e A » and their different
judgements are shown below

Aset AeA obs
Ais a set a is an element of A A"'0

A is a proposition a is a proof of A A is true
A is an intention a is a method of realizing A A is realiz.
A is a problem a is a method of solving A A is solvable

The first is the set theoretical judgement, the second is the logical one. The
third is due to Heyting [Heyting 31]. The fourth is due to Kolmogorov
[Kolmogorov 32]. Briefly, we can say that Kolmogorov's meaning of problem
is « something to do » (a task) and its solution is « how to do ». Kolmogorov
called programs such solutions.

Following the constructive approach, Martin-Lcef believes that there are no
uni verses a priori, i.e., the universes must be built. This approach had begun
before with Brouwer [Brouwer]. So the objects of constructivism are all
constantly being constructed, that is, they have a kind of potential existence.
Thus, we can understand a set as a kind of procedure to generate its elements.
This is a natural way to regard the set-theoretical form of judgement. Another
thing that we must ensure is the equality of elements. We must indicate how
to construct equal elements. ln the logical interpretation this approach means
that a proposition is true when we say what we can take into account as being
a proof of it, and when two proofs are equal proofs of the sarne proposition.

ln order to implement the notions above, Martin-Lcef uses the concept of
canonical element, or canonical proof. So the normal form theorem underlies
the concept above. Thus, the formation rules of a given set must not only
include the way the canonical elements of the set are generated but also the
rules concerning equality among canonical elements. So an element (in
general) of a set is a method to yield canonical elements.

Ali sets (types) of predicative intuitionistic type theory are built from
already constructed sets, i.e., from sets which have already their procedures

Intuitionistic Type Tlieory and Data Types 63

of generation. These procedures must be well defined rules of formation,
i.e., there are some primitive seis. The primitive seis do not need other sets
for their construction, which is done using well defined constructors
determined by the formation rules. They are the finite sets and the natural
numbers set. ln order to produce higher types we use the following
constructors :

The Cartesian product (n),

• The disjoint union or sum of a family set (:!;),

• Toe disjoint union of two sets (+),

• Propositional equality (!),

Lists of elements of a set (List),

Wellorderings (W).

Nevertheless, as Martin-Lcef derives the natural numbers from the well-or­
derings type (using the finite sets), we can say that the finite sets are indeed
the primitive types of !TI. It is easy to see that one can only use these
constructors a finite number of times to construct higher types from the
primitive types (sets). So we have only a finite type theory.

ln order to add transfinite types, Martin-Lcef introduced universes in his
theory. The main idea of the uni verses is to describe the least sei closed under
certain specified set-forming operations. This is made in this way because
intuitionistically we cannot have the sei of ali sets, since we cannot exihibit,
once and for all, all possible sei forming operations. But the concept of
universes is enough to allow us to construct sei of sets. Martin-Lcef gives two
ways to the defining universes, a Tarskian and a Russellian. For more details
about universes see [Martin Lcef 84].

ln the sequei we present briefly the types used in this work giving more
emphasis to the type of We/1-orderings.

A very important concept in Martin-Lcef is that of hypothetical judgement.
That is, a judgement based on a priori established judgements. We restrict
ourselves to the case of one hypothesis only. The general case is an immediate
consequence. A well-known concept in sei theory related to hypothetical
judgements is that of an indexed families of sets. To which we contruct a family
A (i) based on another sei, the set of indexes. From a constructive point of view,
the building of an indexed family is a process that assumes a previously built
sei, or better, assumes the existence of its building process. This is undoubtly
a hypothetical reasoning. lndeed, ali ways in !TI of hypothetical reasoning are

64 Edward Hermann Haeusler and Oliver Bittel

represented by the above mentioned. This is a consequence of the fact that we
can interpret the family concept just as a proof that uses hypothesis (this is
done in the logical interpretation of ITT). There are some general facts about
judgements

Toe instantiation of any indexed family of seis by a set of the índex type
is a set.

Equal elements produce equal instantiations

These rules are called substitution rules.

/x E A}

a E A B (x) Set

B (a) Set

{XE A]

a = e E A B (x) Set
B (a) = B (e)

where B (x) [x E A) says that B is a family indexed by A. There are more
substitutions rules in ITT, but we do not need them in this work. Each type in
m is specified by giving a set of rules. These rules pro vide a kind of « meaning
as use » semantics for the types. They fali down into four kinds :

1. Formation rules, which tel1 us the conditions needed to construct a
new type. Toe conditions are in general information saying that such
and such constituent object must be of such and such type.

2. Introduction rules, which tel1 us how the canonical solutions of the
introduced type problem look like.

3. Elimination rules, which tel1 us how to retrieve information about
any of the constituent types from the new type information. The
information, according to our definition of problem, refers to canoni­
cal solutions.

4. Equality rules, which tel1 us when two canonical solutions of the new
type are equal. These mies generally include either implicitly or
explicitly the information about when two canonical solutions of each
of lhe constituent types are equal.

Intuitionistic Type Theory nnd Data Types 65

Note that this structured way of construction is very dose to the Natural
Deduction way of modeling mathematical reasoning, which is not always
constructive.

Toe disjoint union (A + B) of two sets A and B can be viewed as a set which
has as elements the elements of A and of B. However, together with each
element of A + B we have information about to each of A or B this element
belongs. Martin-Lref uses the letters i and j to denote this information. Thus,
we have the following rules for the disjoint union.

+ -Formation

+ -Introduction

+ -Elimination

ae A

A Set B Set
A+ B Set

be B
i (a) e A + B j (b) e A + B

[xe A]
1

/y E BJ
1

e e A + B d (x! e e (i (x)) e (y! e e (i (y!!

+ -Equality

D (e, (x) d (x), (y) e (y)) e C (e)

/y E BJ
1

{xe A]
1

a e A d (x) e C (i (x)) e (y) e C (i (y))
D (i (a), (x) d (x), (y) e (y)) = d (a) e C (e)

/y E BJ
1

{x E AJ

b E A d (x) E e (i (x)) e (y) E e (i (y))
D (j (b), (x) d (x), (y) e (y)) = e (b) e C (e)

It is interesting to note that the equality rules explain the computational
meaning of D.

Another type that we use (in this work) is the Cartesian product of a family
of sets. ln a certain way we can say that this type formalizes the notions of
hypothetical judgement and substitution.

66

n-Formation

n -Introduction

n-Elimination

n-Equality

Edward Hermann Haeusler and Oliver Bittel

[x E AJ

A Sct B (x) Set

m X E A) B (x) Set

[x E AJ

b (x) E m X E A) B (x)
À x b (x) E B (x)

C E m X E A) B (x) a E A
Ap (c, a) E B (a)

/x E AJ

a E A b (x) E m X E A) B (x)
Ap (À xb (x), a) = b (a) E B (a)

The primitive sets in m are just the finite sets, which are given outright; hence
their set formation will have no premisses. For each natural number n (in the
metalanguage) we have the following roles:

N.-Formation and N.-lntroduction

N.-Elimination

N, Set mn E Nn (m =O, ... , n-1)

CE Nn Cm E e (111.) (111 =o, ... , n-1)
Rn (c, co, . . . , c,.1) E C (c)

Where the computational meaning of R,, is given by the following R,,-Equality rule.

Cm E e (111.) (111 =O, ... , n-1)
Rn (mn, ca, . . • , Cn.1) = Cm E e (m11)

lntuitionistic Type Theory and Data Types

The set N0 is the empty set, for it does not have any introduction rule.

2.1 The well-ordered type

67

We now present the main type in this work, namely the Well-ordering type.
This type formalizes two concepts :

Toe notion of predecessor (or successor).

Toe existence of an initial element for each instance of the type.

A well-known example of a well-ordered constructive set is the set of
natural numbers, where O is the minimal element and successor is a primitive
notion. However, in the case of natural numbers each element has only one
predecessor. We know that this is not lhe case in general. There may be
well-ordered sets with elements with infinitely many predecessors. An ex­
ample is the set of ali subsets of lhe natural numbers set wilh inclusion as the
arder relation. Thus, the set N (of lhe natural numbers) has N - (nl as
predecessor for each n. Note lhat lhere is no problem with the axiom of choice
in lhe example above, since it is proved in ITT.

A well-ordered set may constructively be given by saying how we obtain
the predecessors of any element. Thus any element of a well-ordered set
should contain ali information needed to get each of its predecessors, that
is:

How many predecessors does it have ?

« What » are they ?

Martin-Lref structured the necessary information in the following way :

1. Toe quantity of elements is given, in a ralher abstract way, by a set. For
example an element that has no predecessors will have the empty set
No associated to it.

2. The predecessors are given by a function from the already mentioned
sei into the well-ordered set.

Since each element of the well-ordered sei has a different number of
predecessors, the information about the set mentioned in the first item is
given by an índex. Note that in this way there is no special treatment of the
initial elements besides associating to them the índex of the empty sei. Thus,
we need a family of sets to build any well-ordered set. This is the meaning
of the rule below.

68 Edward Hermann Haeusler aud Oliver Bittel

W-Formation

[x E A]
1

A Sei B (x) Sei
(W x E A) B (x) Sei

Following the remarks above an element of a well-ordered sei is of the form
Sup (a, f) where a is the index of the set thal provides the numbers of
predecessors and f is the function that generates lhem. Thus we have the
following:

W-Introduction

a E A b E B (a) ➔ (Wx E A) B (x)
Sup (a, b) e (Wx e A) B (x)

The W-Elimination rule represenls the structure of proofs by induction on
the well-ordered seis.

W-Eliminalion

/xe A,ye B(x)->(Wxe A)B(x),ze mve B(x))C(Ap (y,v))]
1

e E (Wxe A)B(x) d (x, y, z) e C (Sup (x, y))
T (e, (x, y, z) d (x, y, z)) e C (e)

ln the rule above, z may be viewed as a proof that the C holds for ali
predecessors of Sup (x, y) and d (x, y, z) is the proof that C holds for Sup (x, y)
under this assumption. Thus, in these conditions T (e, (x, y, z) d (x, y, z)) is a
proof that C holds for e arbitrary. Toe way of computing T is given by the
W -Equality rule below, that is just the recursion on well-ordered sets.

W-Equality

[x E A,ye B(x) ➔ (Wxe A)B(x),ze mve B(x))C(Ap (y,v))]
1

a e A b e B (a) ➔ (Wx e A) B (x) d (x, y, z) E C (Sup (x, y))
T (Sup (a, b), (x, y, z) d (x, y, z)); d (a, b,).. vT (Ap(b, v), (x, y, z) d (x, y, z))) e C (Sup (a, b))

Martin-Lref derived the natural numbers from the W -type by setting :

Intuitionistic Type Theory and Data Types 69

2. B (Oz) = No

3. B (12) = N1

Thus our relationships are

• O = Sup (02, À xR0 (x)) that is the initial element.

• a' = Sup (12, À xa) is the successor of a.

Thus, we can see the set (type) of natural numbers of JIT (as presented in
[Martin-Loef 84) as (Wx E N,) B (x).

Another example is the use of the W-type to define simultaneous
recursion on a pair of natural numbers. To obtain this simultaneous
recursion we need to build up a well-ordered sei that has (as the initial
elements) the pairs (x, y) with either x or y equal to zero. Besides we need
to have as only predecessor of (x', y') the pair (x, y). So our set has an infinite
number of initial elements and each element has only one predecessor. We
call this set 2 co.

Below, we give the 2 co--lntroduction rules as instances of W -Introduction
by doing A = N x N, B ((O, x)) = B ((y, O)) = N0 and B ((x', y')) = N1 •

X E N
Sup ((x, O), ÀvRo (v))

Y E N
Sup ((O, y), ÀVRo (v))

Sup ((x, y), f) E 2 ro
Sup ((x', y'), ÀvSup ((x, y), f))

Next we show the 2 co--Equality rule which will explain the simultaneous
resursion mechanism. For the two initial cases, we only have

d E C (sup ((0, y), ÀyR (y))) d e e (sup ((x, O), ÃyR (y)))

For the other case, we do the following in order to get the instance of the
W-Equality

1 . We take the assumption a E A as (x',y') E N x N.

2. Instead of the premiss about the predecessor function, we take the
element sup ((x, y), f) E 2 co.

70 Edward Hermann Haeusler and Oliver Bittel

3. Since B ((x', y)) has only one element (11), we replace z E (TI v E B ((x', y)))
C (Ap (À. ysup ((x, y), f), v) by Ap (z, 1t) E C (sup ((x, y), f)).

4. Finally we replace a E A and b E B (a) ➔ 2 ro by its 2 ro-Introduction
conclusion.

Thus :

[(x
º
, y

º
J e Nx N, Sup ((x,y!,f) e 2 co, Ap (z, 1 1) e C (S11p ((x, y),f)JJ

Sup «a·, b
º
J,1,.ySup {(a, b),g)) d (x, y,f, Ap (z,1 1)) e C (S11p ((x',y"), À vSup {(x, y),f))J

T(Sup((a
º
,b

º
))..vSup((a,b),f)),(x,y,f ,7.)d(x,y,f ,Ap (z,J 1))) = d(aº

,b
º
,g,T(Sup((a,b),g),(x,y,f ;z)d(x,y,f ,Ap (z,J 1))))

We note that the mies depend mainly on x, y and z. Thus, we can relate
directly N x N to 2 ro, simplifying the rule above such that :

[(x, y) E N X N, z E e (x, y))

(a', b') e N x N d (x, y, z) e C ((x', y'))
T ((a', b'), (x, y, z) d (x, y, z)) = d (a', b', T ((a, b), (x, y, z) d (x, y, z)))

where we get (x', y') e N x N from (x, y) e N x N.
Thus doing lhe sarne for the initial cases and writing ali cases in a single

rule we have the desired simultaneous recursion rule :

[(x, y) e N x N, z e e (x, y!l

(a, b! e N x N d0y e e (O, y) d,o e e (x, O! d (x, y, z) e e (x', y'!
R2 ro ((a, b), day, dx0, (x, y, z) d (x, y, z)) e C (a, b)

Toe equality rule says that

1. If a = O, then we have d E C (O, b).

2. If b = O, then we have d e C (a, O).

3. Else we havea = t and b = f and d (i',l, R2w (i,j, (x, y, z) d (x, y, z))) E C (p, b).

3. The Tree. (D) type

ln this section we define the type of the trees of maximum order equals
n (Tree. (D)). To get trees from the W-type we need to see them as members

Intuitionistic Type Theory and Data Types 71

of a well-ordered set (type). However, as trees themselves have a natural
ordering, we should specify this in the W -type. Using this approach, we see
that the initial element for ali trees is the empty one. It seems clear that a
tree which has only one nade is the natural successor of the empty tree, for
we can see it as a tree which has this nade and ali of its n subtrees are
empty. Naturally, the successor of any sei (b1, • • • , b") of trees is the tree
which has a nade a as root and its subtrees are b,, . . . , b.,

From the point of view of the W-type, the empty tree must be
associated to the initial element. We can do this as i t was dane for the
natural numbers in [Martin Lcef 84]. However, here we have to take
into account the labels of the nades that are elements of D. As the
empty tree does not have any label, and we must label ali the nades
of a nonempty tree, we cannot associa te any member of D to lhe empty
set (N 0) in arder to describe the initial element. So we add a new
element creating a new set for set of indexes. We use the disjoint sum
of two sets to obtain the desired sei. Besides, as any nonempty tree
has at most n predecessors, then the family of indexed sets is as follows
for D + N1 as set of indexes :

• B (i (d)) = N"

B (j (O,)) = N0

Thus, doing

• nil-tree = Sup (j (01), À xR,, (x))

a = Sup (i (a), À xRn (x, nil-tree, . . . , nil-tree))

A
b1 bn = Sup (i (a), À xRn (x, b1, . . . , bn)!
/J. " . /J.

We have lhe following rules as Tree-Introduction :

nil-tree E Tree" (D)

• a E D b1 E Trcc,. (D) . . . bn E Treen (D)

A
b1 b,. E Tree,. (D)
ó. . . . ó.

The former we can justify as following

72 Edward Hermann Haeusler and Oliver Bittel

/x E No}
01 E N1 1

1 Ro (x) E (Wx E (D + N1)) B (x)
; (01) E D + N1 À xRo (x) e No ➔ (Wx E /D + N1!!

Sup (j (01), À. xRo (x)) e (Wx e (D + N1!! B (x)

And we justify lhe last with the following derivation :

[x E N.,J, b; e (Wx E (D + N1)) B (x) (i = 1, . . . , n)
a E D 1

1 Rn (x, b1, . . . , bn! E (Wx E (D + N1!! B (x)
i (a) E D + N1 À xRn (x, b1, . . . , bn! E Nn ➔ (Wx e (D + N1)) B (x))

Sup (i (a), À xRn (x, b1, . . . , bn!) e (Wx e (D + N1!! B (x)

However, lhe rules above only show how to construct trees of order n.
Nothing was said about how to deal with trees. ln a general view we need
rules that allow us to prove properties about trees. A computer scientist proves
properties of trees by structural induction. Thus, we need ind uction mies
for trees. Here, we will not content ourselves wilh lhe presentation of the
induction rules as elimination rules. We include the equality rules as being
pari of the explanation of « what a structural induction on trees is ».

To proof some general property about trees we must prove it for the empty
tree (nil-tree). Furthermore we must prove that the property hold for a tree,
assuming that it holds for ali of its subtrees, indeed only the greatest proper
subtrees need to be taken into account. This kind of proof is formalized by lhe
following rule

Tree-Elimination

{x e D, y; E Treen (D), z; E C (y;)}
1

➔ ➔ Ã) e (x, y , Z) E C (y1 Yn

t E Treen (D) d E e (nil-tree) /j, • • • A

Treerec (t, d, (x, y, i') e (x, y, z)) E e (t)

where f = (y1, . . . , yn) and z➔
= (z1, . . . , Zn). Note d E C (n il-tree)

should be read as d is a proof tha t the property C holds for the empty
tree. e (x, f, z➔) should be read as the proof that C holds for a tree
with roo! x and subtrees y;, from the assumptions that z; are proofs
that C holds for each respective subtree y;. The last is just our
induction hypothesis. Well, the conclusion should be read as Treerec
(t, d, (x, f, i') e (x, f, i')) is a proof that C holds for any tree t . But,

Intuitionistic Type Theory and Data Types 73

from the intuitionisticpointof view a proof isacomputableobject and we
must say how to compute Treerec. Intuitively, we know that Treercc
represents lhe recursion over trees. But, before we justify lhe rule
above with the W-introduction rule.

Since there is no predecessors for lhe empty tree, lhe W-eliminalion as well
as the W-equality for it is only d E C (nil) and :

d e C (nil-tree)
T (nil-tree, d) = d e C (ni/-tree)

respectively.
ln the general case we have that

• [x E Nnl b; E (Wx E (D + N1)) B (x) (i = 1 , . .. , n)
Rn (x, b1, . . . , b.) E (Wx E (D + N1)) B (x)

À xRn (x, b1, . . . , bn! E Nn ➔ (Wx E (D + N1)) B (x))

justifies the assumption y E N. ➔ (Wx E (D + N1)) B (x) of the W­
Elimination rule by taking y as being À xRn (x, y1, . . . , y.) so its
discharge can be viewed as a discharge of all y; E Tree. (D).

Using the derivations above, the assumptions of the Tree-Elimination
rule, and some rules of Martin-Lcl!f type theory we can justify the
assumption À vR. (v, z1, • • • , z.) E (n v E N.) C (Ap (y, v)) need to use the
W -Elimination.

x e Treen (D) y; e Treen (D), y e Nn ➔ Treen (D)
1 n

C (x) Ap (y, m;) = y; e Tree. (D)
Z; E C (y;) -------7-,7.:7.C-='_s,----,a7.::;--

[V E N.J ___________
c
,,.
<
...,
A�p,,

<y
_
.
_
m
_
,-)
_
!
_
-
_
c
,..,

<
f-
y
_
;!_

where n is:

z; e C (Ap (y, m;))
R. (v, ZJ, . . • , Zn/ E e (Ap (y, v))

X vR. (v, ZJ, . • . , Zn! E (I] V E N.) e (Ap (y, vi!

111; E Nn y e Nn ➔ Treen (D) y; e Treen (D)
Ap (y, m;) = Rn (m;, y1, . . . , yn! e Treen (D) Rn (m;, y1, . . . , y.) = y; e Treen (D)

Ap (y, m;) = y; e Tree. (D)

lt should be noted that in order to apply lhe Rn we need to make sure lhe
premisses for each 111; e (O, . . . , n-1 1 hold, but for the sake of space we lei
this implicit rather than explicit.

74 Edward Hermann Haeusler and Oliver Bittel

ln order to see lhe Tree-Elimination rule as an instance of the W -Elimi­
nation, we prove lhe assumption i (x) E (D + N1) usingx E D, and taking:

- d (i (x), Ã. xR, (x, y,, . . . , y,), Ã. vR, (v, Zi, . . . , z,)) as e (x, y, z'), and

- T (1, (x, y, z') e (x, y, z')) as Treerec (1, d, (x, y, z') e (x, y, .z').

The las! by putting the two cases of the W-Elimination (instantiated to
Tree-Elimination) in the computational meaning of Treerec, adding one
arity in order to get lhe basis step d.

ln order to obtain the computational meaning of Treerec, we should look to the
Tree-Equality rules which are instances (as above) of the W-Equality rules.

Tree-Equality

/x e D, y; e Treen (D), z; e C (y;)]
1

(➔ ➔ ,-....
e X, y , Z) E C (y1 yn/

d e C (nil-tree) t,, . . . t,,
Treerec (nil, d, (x, y, z') e (x, y, z')) = d e C (nil-tree)

/x e D, y; e Treen (D), z; e C (yJJ
1

➔ ➔ ,-....
e (x, y , z ! e e (y1 y2!

a e D b; e Treen (D) d e C (nil-tree) t,, . . . t,,
a

Treerec (b1"' bn, d, (x, y, z') e (x, y, i')) =
A . . . A

e(a, b1, . . . , bn, Treerec (bi, d, (x, f, Z) e(x, f, Z), . . . , Treerec (bn, d, (x, f, Í) e(x, f, Í))
a

e C (ln ,-.... bn!

4. The list-type

We get lists from trees by stating

• B (j (O,)) = No.

A . . . A

Intuitionistic Type Theory and Data Types 75

B (i (d)) = N1•

• List (D) = (Wx e (D + N1)) B (x).

This means that a list is, for us, an unary tree. However, we can derive lhe
Martin-Lcef's rules for lists from ours for trees. Thus, for Lisl-introduction, we
have :

a e D b e List (D)
a.b e List (D)

where List (D) is taken as Tree1 (D). Thus, from the point of view of the W -type
a.b = Sup (i (a), Àxb), reminding Ri (x, b) = b. Besides, we can take nil-/ist as
being nil-tree, for nil-tree e Treen (D) for ali n.

For the List-Elimination we have

{x E D, y E Lisl (D), z E e (y)]

1

1 e List (D) d e C (nil! e (x, y, z) e C (x.y)
Listrec (l, d, (x, y, z) e (x, y, z)) e C (l)

where Listrec (1, d, . . .) = Treerec (/, d, . . .). Finally, it is clear that we can see the
List-equality as an instantiation of Tree-Equality and hence an inslantiation
of W-Equality.

/x E D, y E Lisl (D), Z E C (y)]
1

d e C (nil-list) e (x, y, z) e C (x.y)
Listrec (l, d, (x, y, z) e (x, y, z)) = d e C (nil-list)

It is interesting to note that the presence of the induction step in the rule is
inherited from the W -equality rule.

/x e D, y e Lisl (D), z e C (y)]
1

a e D b e List (D) d e C (nil-list) e (x, y, z) e C (x.y)
Listrec (a.b, d, (x, y, z) e (x, y, z)) = e (a, b, Listrec (b, d, (x, y, z) e (x, y, z))) e C (a.b)

4.1. Stacks
It is usual to specify dala-types algebraically. This kind of specificalion

consists in declaring a sei of operations in a rather axiomatic way. Thus, for
example we may have lhe following specification of the data-type Stack of any
basic type Bh;pe. (adapted from [Guttag 77]).

76 Edward Hermann Haeusler and Oliver Bittel

Newstack : ➔ Stack
Push : Stack x Btype ➔ Stack
Top : Stack ➔ Btype
Pop Stack ➔ Stack

IsNewStack ? Stack ➔ Boolean

- IsNewStack ? (Newstack) = tnie
- IsNewStack ? (Push (s, e)) = false
- Pop (Push (s, e)) = s
- Top (Push (s, e)) = e
- Pop (Newstack) = errar
- Top (Newstack) = error

Note that this kind of specification usually uses a distinguished element
(error) in order to not be partia!. However, this may not be a good idea since
we should declare that the result of any sequence of operation will be « error »
whenever it is an intermediate result. For example Pop (Pop (Newstack)) = error.
This is a way to supply continuity to the operations. Nevertheless the
introduction of error may be seen as (a little) artificial. Another solution may
simply state that Pop (Newstack) is a kind of miswritten construction, that is
the problem s reduced to a syntactic one. As ITT can be viewed as having its
semantics based on the « meaning as use » approach we will see in the sequei
that the last is the most natural way of doing it.

The type Stack may be spedfied in IIT as following

Push (a, b) = a.b

Top (1) = Listrec (1, nil-list, (x, y, z) x)

Pop (/) = Listrec (/, nil-list, (x, y, z) y)

IsNewStack ? (/) = Listrec (/, 02, (x, y, z) 1,)

where should be noticed that we related nil-list to the empty stack which is
specified by the operation Newstack. However, one can note that the function
Pop was defined in a way that there is no undefiniteness. The reason is that
we can only express the totally undefined function, that is À xR0 (x) E (IT x E
N0) B (x) for any type B (x) (x E N0). However, we cannot execute this function
since it is a function with empty range. Thus, ali the functions specified by the
type theory are total. We should note that the only way to express the
undefiniteness is with R0•

Nevertheless, the solution above cannot be used with regard to Top, i.e., Top
(/) = Listrec (/, ni/-list, (x, y, z) x), for this term cannot be derived from

Intuitionistic Type Theory and Data Types 77

List-Elimination since nil-list is not of the type Btype. Besides, an element of
Btype cannot be used without losing the intended meaning of Top. Thus, we
may include the errar. But, as it has already been pointed out, this would be
too artificial if we are not treating of exceptions. Note that this could be the
case too, as for example in a compiler specification.

We may also assume that exceptions treatment should not be included in a
data type specification, i.e., the partiality is in a certain way desired. Thus, we
can take into account that Top (Newstack) only has no meaning. So, we do not
need to give a meaning to it (mor). ln this case we will see that m provides too Is
enough for this task in a natural way. The below derivation may be of some help.

/x e D/ [l e List (D)]
x.l e list (D) [x e 0/ [x e O/

Listrec (x.l, x, (x, y, z) x) e O
À xListrec (x.l, x, (x, y, z) e D -+ D

À l À xlistrec (x.l, x, (x, y, z) e O -+ (D -+ D)

And we can define Top (a.b) = Ap (Ap (À I À xlistrec (x.l, x, (x, y, z)), b), a). But,
this is the sarne that Top (a.b) = b. Anyway we have defined it in such a way
that Top (nil-lisl) has no meaning. However, we should note that we implicitly
related List (D) to D x list (D) for ali the non-nil elements. Nevertheless this
can be justified in lhe conclusion if we note that A ® B ➔ C may be viewed as
A ➔ (B ➔ C). We remind the reader that this is just the logical intuitionistic
relationship between A /\ B ➔ C and A ➔ (B ➔ C) provable in ITT.

ln order to prove that this specification is really a stack we should prove the
equations of the algebraic specification. Top (Push (e, s)) = e e D is one of them
(expressed in fIT). Nevertheless, because of our definition we do not need any
inductive proof. It is enough to note that Top (Push (e, s)) = Top (e.s) e D and Top
(e.s) = e e D under the assumptions e e D and s e list (D). The other equation is
Pop (Push (e, s)) = s. Using the List-Equality rule we can obtain the result desired.

e e O se List (D) nil-list e list (D) [y e List (D)]
Listrcc (c.s, nil-list, (x, y, z) y) = s e list (D)

Using lhe definition of P11sh anda substitution rule we get that Listrec (Push
(e, s), nil-list, (x, y, z) y) = s e Lisl (D). Finally, by the definition of Pop we reach
the conclusion.

5. Conclusion

ln this work we have shown how to get some inductive types from the
W -type. Howevcr, bascd on lhe stacks example we can note that ITT gives

78 Edward Herma1111 Hneusler nnd Olh1cr Bittel

us more than the list type when we derived it from the W-type. Since we
defined the operations of the Stack type using a general recursion principie
on lists, we could say that the mies about Lists have already power enough
to do the specification of the operations refered. ln other words, when we
define a type in JTT we define how the objects would be used rather than
the type itself. W hat is diferent in ITT is that objects definition is done using
constmction operations (introduction mies) as well as analysis operations
(elimination rules) together with reduction relationships (equality rules).
Thus, it may be the case that the operations coincide with the data type
operations. We may even consider what does this coincidence mean.
Anyway we cannot expect that in the case of an algebraic specification this
should be the right thing.

Thus, in order not to get into philosophical questions about lhe meaning
in computation we use the concept of data strnctures as being related to the
objects in a data type. Thus we can say that lhe W-type was used to constmct
the objects used in a data type specification. For example, the type List may
be used to specify Stacks or lhe data type List (note the difference) or even
other data type that uses objects with lhe sarne inductive principie of
construction.

We remark that the advantage of using ITT to specify types is that we have
mies of construction that may be used as verification mies as well. And ali lhe
properties about data type are proved from the objects constmction levei.
Finally, we would like to conjecture that ali inductively defined data structures
can be defined using W-types as the main type in the specification. This work
was enough to raise the question. However, a more general treatrnent is needed
to answer it.

6. Acknowledgements

One of us (E. H. H.) would like to thank GMD, for the nice stay, as well as
for the financial support, and particularly Hendrik C. Lock, who was respon­
sable for lhe invitation. We also thank Valéria Paiva for the useful corrections
suggested after the reading of the first draft.

References

(Brouwer] Cambridge Le.ctures on Intuitiouism.
[Guttag 77] Guttag, John. "Abstract Data Types and the Development of Data

Structures" Communications of ACM, Vol. 20, Number 6,)une 1977.
(Heyting 31] Heyting, A. "Die lntuitionische Grundlegung der Mathematik",

Erkenntnis, Vol. 2, 1931.

lntuitiouistic Type T11eory and Data Types 79

[Kolmogorov 32] Kolmogorov, A.N. "Zur Deutung der Intuitionischen Logik",
Mathematische Zeitschrift, Vol. 35, 1932.

[Martin-Lcef 84] Martin-Lcef, Per. Jnt11itio11istic TypeThenry, Bibliopolis, Edizioni di
Filosofia e Scienza, 1984.

[Martin-Lcef 79] Martin-Lref; "Constructive Mathematics and Computer
Programming", paper read at the 6-th lnternational Congress for Logic,
Methodology and Phil. of Science. Hannover, Aug 1979, pp. 11 .

