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1. Introduction 

When defining a data type, one often uses the well-known equation 
datatype = objects + operations. However, when the data-type is defined by 
induction (lists, trees, stacks, etc.) it is usual to construct the objects using 
the operations themselves on some initial elements. Martin-Lcef's type 
theory (IIT) as an intuitionistic approch works by defining types in a way 
that objects definition proceeds simultaneously with lhe operations definition. 
Martin-Lcef has defined some well-known data-types (iist and natural 
numbers). He also defined the type of well-ordered sets and showed how 
to derive Natural numbers from this type. Nevertheless, it seemed to him 
(cf. [Martin-Lcef 79]) that this well-ordered type was not much related to 
computational aspects, since its main purpose was the definition of 
transfinite induction, which apparently had nothing to do with computa­
tion. ln this work we show how to derive some well-known data-types, 
namely trees, lists and stacks, from the already mentioned well-ordered 
type. 

ln section 2 we briefly present the type theory used in this work. ln section 
3 we define the type of trees. ln section 4 we show how to see the list-type 
defined by Martin-Lcef as an instance of the well-ordered type and point out 
an interesting feature of IIT when we get stacks as an instance of it too. Finally 
we conclude this work by asking a question : Is the well-ordered type enough 
to specify ali the inductively defined data-types ? 
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2. ITT : an overview 

The main idea of ITT is to formalize constructive reasoning. This is 
achieved by writing a kind of calculus and giving some possible interpreta­
tions to it, but not necessarily « semantics ». The part concerned with the 
calculus is built from some atomic elements called propositions. The other 
syntatic elements are combinations of propositions built up from operators 
or contructors. Thus the interpretations are given by interpreting the atomic 
elements and the severa! ways of combining them with the use of such 
constructors. Martin-Lcef calls these interpretations « judgments ». They will 
be succintly described below. 

The basic propositions are « A set » and « a e A » and their different 
judgements are shown below 

Aset AeA obs 
Ais a set a is an element of A A"'0 

A is a proposition a is a proof of A A is true 
A is an intention a is a method of realizing A A is realiz. 
A is a problem a is a method of solving A A is solvable 

The first is the set theoretical judgement, the second is the logical one. The 
third is due to Heyting [Heyting 31]. The fourth is due to Kolmogorov 
[Kolmogorov 32]. Briefly, we can say that Kolmogorov's meaning of problem 
is « something to do » (a task) and its solution is « how to do ». Kolmogorov 
called programs such solutions. 

Following the constructive approach, Martin-Lcef believes that there are no 
uni verses a priori, i.e., the universes must be built. This approach had begun 
before with Brouwer [Brouwer]. So the objects of constructivism are all 
constantly being constructed, that is, they have a kind of potential existence. 
Thus, we can understand a set as a kind of procedure to generate its elements. 
This is a natural way to regard the set-theoretical form of judgement. Another 
thing that we must ensure is the equality of elements. We must indicate how 
to construct equal elements. ln the logical interpretation this approach means 
that a proposition is true when we say what we can take into account as being 
a proof of it, and when two proofs are equal proofs of the sarne proposition. 

ln order to implement the notions above, Martin-Lcef uses the concept of 
canonical element, or canonical proof. So the normal form theorem underlies 
the concept above. Thus, the formation rules of a given set must not only 
include the way the canonical elements of the set are generated but also the 
rules concerning equality among canonical elements. So an element (in 
general) of a set is a method to yield canonical elements. 

Ali sets (types) of predicative intuitionistic type theory are built from 
already constructed sets, i.e., from sets which have already their procedures 
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of generation. These procedures must be well defined rules of formation, 
i.e., there are some primitive seis. The primitive seis do not need other sets 
for their construction, which is done using well defined constructors 
determined by the formation rules. They are the finite sets and the natural 
numbers set. ln order to produce higher types we use the following 
constructors : 

The Cartesian product (n), 

• The disjoint union or sum of a family set (:!;), 

• Toe disjoint union of two sets (+), 

• Propositional equality (!), 

Lists of elements of a set (List), 

Wellorderings (W). 

Nevertheless, as Martin-Lcef derives the natural numbers from the well-or­
derings type (using the finite sets), we can say that the finite sets are indeed 
the primitive types of !TI. It is easy to see that one can only use these 
constructors a finite number of times to construct higher types from the 
primitive types (sets). So we have only a finite type theory. 

ln order to add transfinite types, Martin-Lcef introduced universes in his 
theory. The main idea of the uni verses is to describe the least sei closed under 
certain specified set-forming operations. This is made in this way because 
intuitionistically we cannot have the sei of ali sets, since we cannot exihibit, 
once and for all, all possible sei forming operations. But the concept of 
universes is enough to allow us to construct sei of sets. Martin-Lcef gives two 
ways to the defining universes, a Tarskian and a Russellian. For more details 
about universes see [Martin Lcef 84]. 

ln the sequei we present briefly the types used in this work giving more 
emphasis to the type of We/1-orderings. 

A very important concept in Martin-Lcef is that of hypothetical judgement. 
That is, a judgement based on a priori established judgements. We restrict 
ourselves to the case of one hypothesis only. The general case is an immediate 
consequence. A well-known concept in sei theory related to hypothetical 
judgements is that of an indexed families of sets. To which we contruct a family 
A (i) based on another sei, the set of indexes. From a constructive point of view, 
the building of an indexed family is a process that assumes a previously built 
sei, or better, assumes the existence of its building process. This is undoubtly 
a hypothetical reasoning. lndeed, ali ways in !TI of hypothetical reasoning are 
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represented by the above mentioned. This is a consequence of the fact that we 
can interpret the family concept just as a proof that uses hypothesis (this is 
done in the logical interpretation of ITT). There are some general facts about 
judgements 

Toe instantiation of any indexed family of seis by a set of the índex type 
is a set. 

Equal elements produce equal instantiations 

These rules are called substitution rules. 

/x E A} 

a E A B (x) Set 

B (a) Set 

{XE A] 

a = e E A B (x) Set 
B (a) = B (e) 

where B (x) [x E A) says that B is a family indexed by A. There are more 
substitutions rules in ITT, but we do not need them in this work. Each type in 
m is specified by giving a set of rules. These rules pro vide a kind of « meaning 
as use » semantics for the types. They fali down into four kinds : 

1. Formation rules, which tel1 us the conditions needed to construct a 
new type. Toe conditions are in general information saying that such 
and such constituent object must be of such and such type. 

2. Introduction rules, which tel1 us how the canonical solutions of the 
introduced type problem look like. 

3. Elimination rules, which tel1 us how to retrieve information about 
any of the constituent types from the new type information. The 
information, according to our definition of problem, refers to canoni­
cal solutions. 

4. Equality rules, which tel1 us when two canonical solutions of the new 
type are equal. These mies generally include either implicitly or 
explicitly the information about when two canonical solutions of each 
of lhe constituent types are equal. 
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Note that this structured way of construction is very dose to the Natural 
Deduction way of modeling mathematical reasoning, which is not always 
constructive. 

Toe disjoint union (A + B) of two sets A and B can be viewed as a set which 
has as elements the elements of A and of B. However, together with each 
element of A + B we have information about to each of A or B this element 
belongs. Martin-Lref uses the letters i and j to denote this information. Thus, 
we have the following rules for the disjoint union. 

+ -Formation 

+ -Introduction 

+ -Elimination 

ae A 

A Set B Set 
A+ B Set 

be B 
i (a) e A +  B j (b) e A +  B 

[xe A] 
1 

/y E BJ 
1 

e e A +  B d (x! e e (i (x)) e (y! e e (i (y!! 

+ -Equality 

D (e, (x) d (x), (y) e (y)) e C (e) 

/y E BJ 
1 

{xe A] 
1 

a e A d (x) e C (i (x)) e (y) e C (i (y)) 
D (i (a), (x) d (x), (y) e (y)) = d (a) e C (e) 

/y E BJ 
1 

{x E AJ 

b E A d (x) E e (i (x)) e (y) E e (i (y)) 
D (j (b), (x) d (x), (y) e (y)) = e (b) e C (e) 

It is interesting to note that the equality rules explain the computational 
meaning of D. 

Another type that we use (in this work) is the Cartesian product of a family 
of sets. ln a certain way we can say that this type formalizes the notions of 
hypothetical judgement and substitution. 
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n-Formation 

n -Introduction 

n-Elimination 

n-Equality 
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[x E AJ 

A Sct B (x) Set 

m X E A) B (x) Set 

[x E AJ 

b (x) E m X E A) B (x) 
À x b (x) E B (x) 

C E m X E A) B (x) a E A 
Ap (c, a) E B (a) 

/x E AJ 

a E A b (x) E m X E A) B (x) 
Ap (À xb (x), a) = b (a) E B (a) 

The primitive sets in m are just the finite sets, which are given outright; hence 
their set formation will have no premisses. For each natural number n (in the 
metalanguage) we have the following roles: 

N.-Formation and N.-lntroduction 

N.-Elimination 

N, Set mn E Nn (m =O, ... , n-1) 

CE Nn Cm E e (111.) (111 =o, ... , n-1) 
Rn (c, co, . . .  , c,.1) E C (c) 

Where the computational meaning of R,, is given by the following R,,-Equality rule. 

Cm E e (111.) (111 =O, ... , n-1) 
Rn (mn, ca, . . •  , Cn.1) = Cm E e (m11) 
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The set N0 is the empty set, for it does not have any introduction rule. 

2.1 The well-ordered type 

67 

We now present the main type in this work, namely the Well-ordering type. 
This type formalizes two concepts : 

Toe notion of predecessor (or successor). 

Toe existence of an initial element for each instance of the type. 

A well-known example of a well-ordered constructive set is the set of 
natural numbers, where O is the minimal element and successor is a primitive 
notion. However, in the case of natural numbers each element has only one 
predecessor. We know that this is not lhe case in general. There may be 
well-ordered sets with elements with infinitely many predecessors. An ex­
ample is the set of ali subsets of lhe natural numbers set wilh inclusion as the 
arder relation. Thus, the set N (of lhe natural numbers) has N - (nl as 
predecessor for each n. Note lhat lhere is no problem with the axiom of choice 
in lhe example above, since it is proved in ITT. 

A well-ordered set may constructively be given by saying how we obtain 
the predecessors of any element. Thus any element of a well-ordered set 
should contain ali information needed to get each of its predecessors, that 
is: 

How many predecessors does it have ? 

« What » are they ? 

Martin-Lref structured the necessary information in the following way : 

1. Toe quantity of elements is given, in a ralher abstract way, by a set. For 
example an element that has no predecessors will have the empty set 
No associated to it. 

2. The predecessors are given by a function from the already mentioned 
sei into the well-ordered set. 

Since each element of the well-ordered sei has a different number of 
predecessors, the information about the set mentioned in the first item is 
given by an índex. Note that in this way there is no special treatment of the 
initial elements besides associating to them the índex of the empty sei. Thus, 
we need a family of sets to build any well-ordered set. This is the meaning 
of the rule below. 
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W-Formation 

[x E A] 
1 

A Sei B (x) Sei 
(W x E A) B (x) Sei 

Following the remarks above an element of a well-ordered sei is of the form 
Sup (a, f) where a is the index of the set thal provides the numbers of 
predecessors and f is the function that generates lhem. Thus we have the 
following: 

W-Introduction 

a E A b E B (a) ➔ (Wx E A) B (x) 
Sup (a, b) e (Wx e A) B (x) 

The W-Elimination rule represenls the structure of proofs by induction on 
the well-ordered seis. 

W-Eliminalion 

/xe A,ye B(x)->(Wxe A)B(x),ze mve B(x))C(Ap (y,v))] 
1 

e E (Wxe A)B(x) d (x, y, z) e C (Sup (x, y)) 
T (e, (x, y, z) d (x, y, z)) e C (e) 

ln the rule above, z may be viewed as a proof that the C holds for ali 
predecessors of Sup (x, y) and d (x, y, z) is the proof that C holds for Sup (x, y) 
under this assumption. Thus, in these conditions T (e, (x, y, z) d (x, y, z)) is a 
proof that C holds for e arbitrary. Toe way of computing T is given by the 
W -Equality rule below, that is just the recursion on well-ordered sets. 

W-Equality 

[x E A,ye B(x) ➔ (Wxe A)B(x),ze mve B(x))C(Ap (y,v))] 
1 

a e A b e B (a) ➔ (Wx e A) B (x) d (x, y, z) E C (Sup (x, y)) 
T (Sup (a, b), (x, y, z) d (x, y, z)); d (a, b,).. vT (Ap(b, v), (x, y, z) d (x, y, z))) e C (Sup (a, b)) 

Martin-Lref derived the natural numbers from the W -type by setting : 
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2. B (Oz) = No 

3. B (12) = N1 

Thus our relationships are 

• O =  Sup (02, À xR0 (x)) that is the initial element. 

• a' = Sup (12, À xa) is the successor of a. 

Thus, we can see the set (type) of natural numbers of JIT (as presented in 
[Martin-Loef 84) as (Wx E N,) B (x). 

Another example is the use of the W-type to define simultaneous 
recursion on a pair of natural numbers. To obtain this simultaneous 
recursion we need to build up a well-ordered sei that has (as the initial 
elements) the pairs (x, y) with either x or y equal to zero. Besides we need 
to have as only predecessor of (x', y') the pair (x, y). So our set has an infinite 
number of initial elements and each element has only one predecessor. We  
call this set 2 co. 

Below, we give the 2 co--lntroduction rules as instances of W -Introduction 
by doing A =  N x N, B ((O, x)) = B ((y, O)) = N0 and B ((x', y')) = N1 • 

X E  N 
Sup ((x, O), ÀvRo (v)) 

Y E  N 
Sup ((O, y), ÀVRo (v)) 

Sup ((x, y), f) E 2 ro 
Sup ((x', y'), ÀvSup ((x, y), f)) 

Next we show the 2 co--Equality rule which will explain the simultaneous 
resursion mechanism. For the two initial cases, we only have 

d E C (sup ((0, y), ÀyR (y))) d e e (sup ((x, O), ÃyR (y))) 

For the other case, we do the following in order to get the instance of the 
W-Equality 

1 .  We take the assumption a E A as (x',y') E N x N. 

2. Instead of the premiss about the predecessor function, we take the 
element sup ((x, y), f) E 2 co. 
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3. Since B ((x', y)) has only one element (11), we replace z E (TI v E B ((x', y))) 
C (Ap (À. ysup ((x, y), f), v) by Ap (z, 1t) E C (sup ((x, y), f)). 

4. Finally we replace a E A and b E B (a) ➔ 2 ro by its 2 ro-Introduction 
conclusion. 

Thus : 

[(x
º
, y

º
J e Nx N, Sup ((x,y!,f) e 2 co, Ap (z, 1 1) e C (S11p ((x, y),f)JJ 

Sup «a·, b
º
J,1,.ySup {(a, b),g)) d (x, y,f, Ap (z,1 1)) e C (S11p ((x',y"), À vSup {(x, y),f))J 

T(Sup((a
º 
,b

º
))..vSup((a,b),f)),(x,y,f ,7.)d(x,y,f ,Ap (z,J 1))) = d(aº 

,b
º 
,g,T(Sup((a,b),g),(x,y,f ;z)d(x,y,f ,Ap (z,J 1)))) 

We note that the mies depend mainly on x, y and z. Thus, we can relate 
directly N x N to 2 ro, simplifying the rule above such that : 

[(x, y) E N X N, z E e (x, y)) 

(a', b') e N x N d (x, y, z) e C ((x', y')) 
T ((a', b'), (x, y, z) d (x, y, z)) = d (a', b', T ((a, b), (x, y, z) d (x, y, z))) 

where we get (x', y') e N x N from (x, y) e N x N. 
Thus doing lhe sarne for the initial cases and writing ali cases in a single 

rule we have the desired simultaneous recursion rule : 

[(x, y) e N x N, z e e (x, y!l 

(a, b! e N x N d0y e e (O, y) d,o e e (x, O! d (x, y, z) e e (x', y'! 
R2 ro ((a, b), day, dx0, (x, y, z) d (x, y, z)) e C (a, b) 

Toe equality rule says that 

1. If a = O, then we have d E C (O, b). 

2. If b = O, then we have d e C (a, O). 

3. Else we havea = t and b =  f and d (i',l, R2w (i,j, (x, y, z) d (x, y, z))) E C (p, b). 

3. The Tree. (D) type 

ln this section we define the type of the trees of maximum order equals 
n (Tree. (D)). To get trees from the W-type we need to see them as members 
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of a well-ordered set (type). However, as trees themselves have a natural 
ordering, we should specify this in the W -type. Using this approach, we see 
that the initial element for ali trees is the empty one. It seems clear that a 
tree which has only one nade is the natural successor of the empty tree, for 
we can see it as a tree which has this nade and ali of its n subtrees are 
empty. Naturally, the successor of any sei (b1, • • •  , b") of trees is the tree 
which has a nade a as root and its subtrees are b,, . . .  , b., 

From the point of view of the W-type, the empty tree must be  
associated to the initial element. We  can do this as  i t  was dane for  the 
natural numbers in [Martin Lcef 84]. However, here we have to take 
into account the labels of the nades that are elements of D. As the 
empty tree does not have any label, and we must label ali the nades 
of a nonempty tree, we cannot associa te any member of D to lhe empty 
set (N 0) in arder to describe the initial element. So we add a new 
element creating a new set for set of indexes. We use the disjoint sum 
of two sets to obtain the desired sei. Besides, as any nonempty tree 
has at most n predecessors, then the family of indexed sets is as follows 
for D + N1 as set of indexes : 

• B (i (d)) = N" 

B (j (O,)) = N0 

Thus, doing 

• nil-tree = Sup (j (01), À xR,, (x)) 

a =  Sup (i (a), À xRn (x, nil-tree, . . .  , nil-tree)) 

A 
b1 bn = Sup (i (a), À xRn (x, b1, . . .  , bn)! 
/J. " . /J. 

We have lhe following rules as Tree-Introduction : 

nil-tree E Tree" (D) 

• a E D b1 E Trcc,. (D) . . .  bn E Treen (D) 

A 
b1 b,. E Tree,. (D) 
ó. . . .  ó. 

The former we can justify as following 
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/x E No} 
01 E N1 1 

1 Ro (x) E (Wx E (D + N1)) B (x) 
; (01) E D + N1 À xRo (x) e No ➔ (Wx E /D + N1!! 

Sup (j (01), À. xRo (x)) e (Wx e (D + N1!! B (x) 

And we justify lhe last with the following derivation : 

[x E N.,J, b; e (Wx E (D + N1)) B (x) (i = 1, . . .  , n) 
a E D 1 

1 Rn (x, b1, . . .  , bn! E (Wx E (D + N1!! B (x) 
i (a) E D + N1 À xRn (x, b1, . . .  , bn! E Nn ➔ (Wx e (D + N1)) B (x)) 

Sup (i (a), À xRn (x, b1, . . .  , bn!) e (Wx e (D + N1!! B (x) 

However, lhe rules above only show how to construct trees of order n. 
Nothing was said about how to deal with trees. ln a general view we need 
rules that allow us to prove properties about trees. A computer scientist proves 
properties of trees by structural induction. Thus, we need ind uction mies 
for trees. Here, we will not content ourselves wilh lhe presentation of the 
induction rules as elimination rules. We include the equality rules as being 
pari of the explanation of « what a structural induction on trees is ». 

To proof some general property about trees we must prove it for the empty 
tree (nil-tree). Furthermore we must prove that the property hold for a tree, 
assuming that it holds for ali of its subtrees, indeed only the greatest proper 
subtrees need to be taken into account. This kind of proof is formalized by lhe 
following rule 

Tree-Elimination 

{x e D, y; E Treen (D), z; E C (y;)} 
1 

➔ ➔ Ã ) e (x, y ,  Z )  E C (y1 Yn 

t E Treen (D) d E e (nil-tree) /j, • • •  A 

Treerec (t, d, (x, y, i') e (x, y, z)) E e (t) 

where f = (y1, . . .  , yn) and z➔ 
= (z1, . . .  , Zn). Note d E C (n il-tree) 

should be read as d is a proof tha t the property C holds for the empty 
tree. e (x, f, z➔) should be read as the proof that C holds for a tree 
with roo! x and subtrees y;, from the assumptions that z; are proofs 
that C holds for each respective subtree y;. The last is just our 
induction hypothesis. Well, the conclusion should be read as Treerec 
(t, d, (x, f, i') e (x, f, i')) is a proof that C holds for any tree t .  But, 
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from the intuitionisticpointof view a proof isacomputableobject and we 
must say how to compute Treerec. Intuitively, we know that Treercc 
represents lhe recursion over trees. But, before we justify lhe rule 
above with the W-introduction rule. 

Since there is no predecessors for lhe empty tree, lhe W-eliminalion as well 
as the W-equality for it is only d E C (nil) and : 

d e C ( nil-tree) 
T (nil-tree, d) = d e  C (ni/-tree) 

respectively. 
ln the general case we have that 

• [x E Nnl b; E (Wx E (D + N1)) B (x) (i = 1 ,  . .. , n) 
Rn (x, b1, . . .  , b.) E (Wx E (D + N1)) B (x) 

À xRn (x, b1, . . .  , bn! E Nn ➔ (Wx E (D + N1)) B (x)) 

justifies the assumption y E N. ➔ ( Wx E (D + N1)) B (x) of the W­
Elimination rule by taking y as being À xRn (x, y1, . . .  , y.) so its 
discharge can be viewed as a discharge of all y; E Tree. (D). 

Using the derivations above, the assumptions of the Tree-Elimination 
rule, and some rules of Martin-Lcl!f type theory we can justify the 
assumption À vR. (v, z1, • • •  , z.) E (n v E N.) C (Ap (y, v)) need to use the 
W -Elimination. 

x e Treen (D) y; e Treen (D), y e Nn ➔ Treen (D) 
1 n 

C (x) Ap (y, m;) = y; e Tree. (D) 
Z; E C (y;) -------7-,7.:7.C-='_s,----,a7.::;--

[V E N.J ___________ 
c
,,.
<
...,
A�p,,

<y
_
.
_
m
_
,-)
_
! 
_
-
_
c
,..,

<
f-
y
_
;!_ 

where n is: 

z; e C (Ap (y, m;)) 
R. (v, ZJ, . . •  , Zn/ E e (Ap (y, v)) 

X vR. (v, ZJ, . • .  , Zn! E (I] V E N.) e (Ap (y, vi! 

111; E Nn y e Nn ➔ Treen (D) y; e Treen (D) 
Ap (y, m;) = Rn (m;, y1, . . .  , yn! e Treen (D) Rn (m;, y1, . . .  , y.) = y; e Treen (D) 

Ap (y, m;) = y; e Tree. (D) 

lt should be noted that in order to apply lhe Rn we need to make sure lhe 
premisses for each 111; e (O, . . .  , n-1 1 hold, but for the sake of space we lei 
this implicit rather than explicit. 
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ln order to see lhe Tree-Elimination rule as an instance of the W -Elimi­
nation, we prove lhe assumption i (x) E (D + N1) usingx E D, and taking: 

- d (i (x), Ã. xR, (x, y,, . . .  , y,), Ã. vR, (v, Zi, . . .  , z,)) as e (x, y, z'), and 

- T (1, (x, y, z') e (x, y, z')) as Treerec (1, d, (x, y, z') e (x, y, .z'). 

The las! by putting the two cases of the W-Elimination (instantiated to 
Tree-Elimination) in the computational meaning of Treerec, adding one 
arity in order to get lhe basis step d. 

ln order to obtain the computational meaning of Treerec, we should look to the 
Tree-Equality rules which are instances (as above) of the W-Equality rules. 

Tree-Equality 

/x e D, y; e Treen (D), z; e C (y;)] 
1 

( ➔ ➔ ,-.... 
e X, y , Z ) E C (y1 yn/ 

d e C (nil-tree) t,, . . .  t,, 
Treerec (nil, d, (x, y, z') e (x, y, z')) = d e  C (nil-tree) 

/x e D, y; e Treen (D), z; e C (yJJ 
1 

➔ ➔ ,-.... 
e (x, y ,  z ! e e (y1 y2! 

a e D b; e Treen (D) d e C (nil-tree) t,, . . .  t,, 
a 

Treerec (b1"' bn, d, (x, y, z') e (x, y, i')) = 
A . . .  A 

e(a, b1, . . .  , bn, Treerec (bi, d, (x, f, Z) e(x, f, Z), . . .  , Treerec (bn, d, (x, f, Í) e(x, f, Í)) 
a 

e C (ln ,-.... bn! 

4. The list-type 

We get lists from trees by stating 

• B (j (O,)) = No. 

A . . .  A 
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B (i (d)) = N1• 

• List (D) = (Wx e (D + N1)) B (x). 

This means that a list is, for us, an unary tree. However, we can derive lhe 
Martin-Lcef's rules for lists from ours for trees. Thus, for Lisl-introduction, we 
have : 

a e D b e List (D) 
a.b e List (D) 

where List (D) is taken as Tree1 (D). Thus, from the point of view of the W -type 
a.b = Sup (i (a), Àxb), reminding Ri (x, b) = b. Besides, we can take nil-/ist as 
being nil-tree, for nil-tree e Treen (D) for ali n.  

For the List-Elimination we have 

{x E D, y E Lisl (D), z E e (y)] 

1 

1 e List (D) d e C (nil! e (x, y, z) e C (x.y) 
Listrec (l, d, (x, y, z) e (x, y, z)) e C (l) 

where Listrec (1, d, . . .  ) = Treerec (/, d, . . .  ). Finally, it is clear that we can see the 
List-equality as an instantiation of Tree-Equality and hence an inslantiation 
of W-Equality. 

/x E D, y E Lisl (D), Z E C (y)] 
1 

d e C (nil-list) e (x, y, z) e C (x.y) 
Listrec (l, d, (x, y, z) e (x, y, z)) = d e  C (nil-list) 

It is interesting to note that the presence of the induction step in the rule is 
inherited from the W -equality rule. 

/x e D, y e Lisl (D), z e C (y)] 
1 

a e D b e List (D) d e C (nil-list) e (x, y, z) e C (x.y) 
Listrec (a.b, d, (x, y, z) e (x, y, z)) = e (a, b, Listrec (b, d, (x, y, z) e (x, y, z))) e C (a.b) 

4.1. Stacks 
It is usual to specify dala-types algebraically. This kind of specificalion 

consists in declaring a sei of operations in a rather axiomatic way. Thus, for 
example we may have lhe following specification of the data-type Stack of any 
basic type Bh;pe. (adapted from [Guttag 77]). 
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Newstack : ➔ Stack 
Push : Stack x Btype ➔ Stack 
Top : Stack ➔ Btype 
Pop Stack ➔ Stack 

IsNewStack ? Stack ➔ Boolean 

- IsNewStack ? (Newstack) = tnie 
- IsNewStack ? (Push (s, e)) = false 
- Pop (Push (s, e)) = s 
- Top (Push (s, e)) = e 
- Pop (Newstack) = errar 
- Top (Newstack) = error 

Note that this kind of specification usually uses a distinguished element 
(error) in order to not be partia!. However, this may not be a good idea since 
we should declare that the result of any sequence of operation will be « error » 
whenever it is an intermediate result. For example Pop (Pop (Newstack)) = error. 
This is a way to supply continuity to the operations. Nevertheless the 
introduction of error may be seen as (a little) artificial. Another solution may 
simply state that Pop (Newstack) is a kind of miswritten construction, that is 
the problem s reduced to a syntactic one. As ITT can be viewed as having its 
semantics based on the « meaning as use » approach we will see in the sequei 
that the last is the most natural way of doing it. 

The type Stack may be spedfied in IIT as following 

Push (a, b) = a.b 

Top (1) = Listrec (1, nil-list, (x, y, z) x) 

Pop (/) = Listrec (/, nil-list, (x, y, z) y) 

IsNewStack ? (/) = Listrec (/, 02, (x, y, z) 1,) 

where should be noticed that we related nil-list to the empty stack which is 
specified by the operation Newstack. However, one can note that the function 
Pop was defined in a way that there is no undefiniteness. The reason is that 
we can only express the totally undefined function, that is À xR0 (x) E (IT x E 
N0) B (x) for any type B (x) (x E N0). However, we cannot execute this function 
since it is a function with empty range. Thus, ali the functions specified by the 
type theory are total. We should note that the only way to express the 
undefiniteness is with R0• 

Nevertheless, the solution above cannot be used with regard to Top, i.e., Top 
(/) = Listrec (/, ni/-list, (x, y, z) x), for this term cannot be derived from 
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List-Elimination since nil-list is not of the type Btype. Besides, an element of 
Btype cannot be used without losing the intended meaning of Top. Thus, we 
may include the errar. But, as it has already been pointed out, this would be 
too artificial if we are not treating of exceptions. Note that this could be the 
case too, as for example in a compiler specification. 

We may also assume that exceptions treatment should not be included in a 
data type specification, i.e., the partiality is in a certain way desired. Thus, we 
can take into account that Top (Newstack) only has no meaning. So, we do not 
need to give a meaning to it (mor). ln this case we will see that m provides too Is 
enough for this task in a natural way. The below derivation may be of some help. 

/x e D/ [l e List (D)] 
x.l e list (D) [x e 0/ [x e O/ 

Listrec (x.l, x, (x, y, z) x) e O 
À xListrec (x.l, x, (x, y, z) e D -+  D 

À l À xlistrec (x.l, x, (x, y, z) e O -+  (D -+ D) 

And we can define Top (a.b) = Ap (Ap (À I À xlistrec (x.l, x, (x, y, z)), b), a). But, 
this is the sarne that Top (a.b) = b. Anyway we have defined it in such a way 
that Top (nil-lisl) has no meaning. However, we should note that we implicitly 
related List (D) to D x list (D) for ali the non-nil elements. Nevertheless this 
can be justified in lhe conclusion if we note that A ® B ➔ C may be viewed as 
A ➔ (B ➔ C). We remind the reader that this is just the logical intuitionistic 
relationship between A /\ B ➔ C and A ➔ (B ➔ C) provable in ITT. 

ln order to prove that this specification is really a stack we should prove the 
equations of the algebraic specification. Top (Push (e, s)) = e e D is one of them 
(expressed in fIT). Nevertheless, because of our definition we do not need any 
inductive proof. It is enough to note that Top (Push (e, s)) = Top (e.s) e D and Top 
(e.s) = e e D under the assumptions e e D and s e  list (D). The other equation is 
Pop (Push (e, s)) = s. Using the List-Equality rule we can obtain the result desired. 

e e O se List (D) nil-list e list (D) [y e List (D)] 
Listrcc (c.s, nil-list, (x, y, z) y) = s e list (D) 

Using lhe definition of P11sh anda substitution rule we get that Listrec (Push 
(e, s), nil-list, (x, y, z) y) = s e  Lisl (D). Finally, by the definition of Pop we reach 
the conclusion. 

5. Conclusion 

ln this work we have shown how to get some inductive types from the 
W -type. Howevcr, bascd on lhe stacks example we can note that ITT gives 
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us more than the list type when we derived it from the W-type. Since we 
defined the operations of the Stack type using a general recursion principie 
on lists, we could say that the mies about Lists have already power enough 
to do the specification of the operations refered. ln other words, when we 
define a type in JTT we define how the objects would be used rather than 
the type itself. W hat is diferent in ITT is that objects definition is done using 
constmction operations (introduction mies) as well as analysis operations 
(elimination rules) together with reduction relationships (equality rules). 
Thus, it may be the case that the operations coincide with the data type 
operations. We may even consider what does this coincidence mean. 
Anyway we cannot expect that in the case of an algebraic specification this 
should be the right thing. 

Thus, in order not to get into philosophical questions about lhe meaning 
in computation we use the concept of data strnctures as being related to the 
objects in a data type. Thus we can say that lhe W-type was used to constmct 
the objects used in a data type specification. For example, the type List may 
be used to specify Stacks or lhe data type List (note the difference) or even 
other data type that uses objects with lhe sarne inductive principie of 
construction. 

We remark that the advantage of using ITT to specify types is that we have 
mies of construction that may be used as verification mies as well. And ali lhe 
properties about data type are proved from the objects constmction levei. 
Finally, we would like to conjecture that ali inductively defined data structures 
can be defined using W-types as the main type in the specification. This work 
was enough to raise the question. However, a more general treatrnent is needed 
to answer it. 
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