


Jo
ão

 V
er

gí
lio

 G
al

le
ra

ni
 C

ut
er

*

*  Universidade de São Paulo (USP) / CNPq

Logic without Hierarchies1

Resumo

A lógica do Tractatus não tem hierarquias. Todos os objetos (e consequentemente 
todos os nomes) estão no mesmo nível. Mesmo assim, a lógica possui categorias, 
com diferentes tipos de quantificadores associados a cada categoria. Muito embora o 
Tractatus não nos dê nenhum exemplo de proposição elementar, podemos imaginar 
que a análise foi levada até o final, e assim sublinhar algumas diferenças notáveis 
entre a lógica do Tractatus e aquela que encontramos nos manuais. Veremos que o 
Tractatus não tem nenhum problema em falar sobre um número infinito de objetos, 
muito embora não haja espaço para uma distinção entre diferentes tipos de infini-
tude. Mostramos como lidar com lidar com quantificações aninhadas no Tractatus 
sem introduzir elementos notacionais novos. Mostramos de que modo Wittgenstein 
acreditava ser possível expressar a equinumericidade (e também desigualdades) 
sem lançar mão de quantificadores de segunda ordem. Mostramos, finalmente, em 
que sentido o Tractatus pode ser inserido no contexto do projeto logicista.

Palavras-chave: Wittgenstein . filosofia da linguagem . filosofia da lógica . 
Russell . teoria dos tipos . fundamentos da matemática.

Abstract

Tractarian logic has no hierarchies. All objects (and consequently all names) stand 
on the same level. Even so, it has logical categories, and different kinds of quanti-
fiers attached to each category. Although the Tractatus itself does not give us any 
example of elementary proposition, we can imagine that analysis was completely 
carried out in order to stress some conspicuous differences between Tractarian logic 

1  I thank professor Tiago Tranjan (UNIFESP) for reading and correcting the original version 
of this paper.
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and the logic we find in text-books. We will see that the Tractatus has no problems 
to talk about an infinite number of objects, although there is no room in the book for 
different kinds of infinity. We show how to deal with nested quantifiers in the Tracta-
tus without adding any notational element. We show how Wittgenstein believed he 
could express equinumerosity (and also inequalities) without appealing to second-
order quantifiers. Finally we show in which sense the Tractatus can be inserted into 
the context of the logicist project.

Keywords: Wittgenstein . philosophy of language . philosophy of logic . 
Russell . theory of types . foundations of mathematics.

Tractarian logic is still more different from the logic we find in the Principia 
Mathematica than we are inclined to think2. The first and main difference 
is to be found at the level of names. The distinction between names and 
propositional functions became so familiar to us that it is difficult to con-
ceive quantification theory against a different background. When we think 
about the opposition between names and propositional functions, we are 
probably thinking in Fregean terms. A propositional function is what is left 
of a proposition after the excision of one of its units of sense. It has an open 
place, or, as Frege used to say, it is “unsaturated”. It asks for some kind 
of “complementation”. In the usual cases, it asks for “names”. Names and 
propositional functions have opposite and complementary natures. Names 
are saturated, and have no need of being “filled in”. They have no “open 
places”, no variables within.

In Russell, this conception is closely related to the idea of a “hierarchy” of 
expressions. The idea is roughly as follows. On the first level we have names 

2  Although the Principia Mathematica is the immediate target of the Tractatus, Wittgenstein’s 
criticism can be extended to a quite general conception of “predication” that dates back to Aristo-
tle. In the Categories (1a20-b9) we find the distinction between things which “are said” of other 
things (as man, for instance, is said of an individual man, like Socrates) and things which “are not 
said” of anything (individual entities in general). In our language, this distinction reappears in the 
form of terms that can be both subject and predicate (like “man”), and terms that can only appear 
in the place of a grammatical subject (like “Socrates”). There is an obvious analogy between this 
Aristotelian dichotomy and the Fregean distinction between “saturated” and “unsaturated” enti-
ties and expressions. Russell’s theory of types is built by its turn on the basic opposition between 
individuals, on the one hand, and all kinds of propositional functions, on the other. All these 
dichotomies involve some kind of “hierarchy”, and so they are bound to fall under the scope of 
the Tractarian criticism sketched below.
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of individuals. They are “saturated”, since they do not have “open places” — 
they are not to be “completed” by any expression. On the second level we 
have “unsaturation” of a certain kind — we have propositional functions tak-
ing names of individuals as arguments. On the third level we have proposi-
tional functions whose arguments are functions of the second level, and so 
on. This hierarchy constitutes the core of Russell’s theory of types — the axis 
around which its many “ramifications” will be defined. The theory of types is 
Russell’s logical syntax of language.3 The most fundamental rule of this syntax 
says that a propositional function cannot take functions of its own level as ar-
guments. In the case of predicative functions, they must look for completion 
at the level immediately below itself in the hierarchy.

Wittgenstein’s logic has no hierarchies. At the basis of language, we have 
the totality of logically proper names. Each of these names must be given 
with definite syntactical rules attached to it, and these rules must mirror the 
combinatorial possibilities of the named object. If an object can combine 
with another, their names can also combine; if they can’t, their names can’t 
either. That’s all. No hierarchical positions have any place here. All names are 
so to speak on the same level. In Wittgenstein’s logic it is perfectly possible 
to imagine that f

1
a, f

2
a , f

3
a, f

4
a, and f

1 
f
2 
f
3 
f
4
 are all meaningful propositions, 

without the risk of being prey to paradoxes. (Indeed these are propositions of 
the hypothetical language we introduce below.)

Any possible (i.e., syntactically permitted, i.e., ontologically grounded) 
combination of names is an elementary proposition. An elementary proposi-
tion is the description of a “state of affairs”, that’s to say, of an immediate con-
catenation of objects. The totality of elementary propositions (in ontological 
terms, of “possible states of affairs”) is the “logical space” — the total space 
of factual possibilities. As Wittgenstein does not give us a single example of 
elementary proposition, we will have to imagine that logical analysis has been 
effected (along strictly Tractarian lines, of course), and that the “logical space” 
was finally reached.

So let us imagine it.
Our hypothetical logical space will be defined by the possible concatena-

tions of objects belonging to three logical categories. The first one has only 

3  This is only true in so far as “formation rules” are concerned: the theory gives the formation 
rules for the elementary proposition, and also includes the rules regulating the use of connectives 
and quanfiers (cf. Principia Mathematica, *9.131). The so-called “transformation rules” naturally 
lie outside the scope of the theory. 
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two objects – let us call them4 a and b. The second has five, named A, B, C, 
D, E. The third category has an infinite number of objects, and we associate 
an infinite number of names to it: f

1
, f

2
, f

3
,… These categories are associated 

to possibilities of concatenation giving rise to states of affairs. We can easily 
describe these possibilities if we define certain variables to range over each 
of the categories, establishing from the start that different kinds of variables 
will range over different kinds of objects, and different variables (of a kind) 
over different objects (of the same kind). The variables a and b will range 
over objects of the first, G, D, L, P and S over objects of the second, and 
φ

1
, φ

2
,
 
φ

3
, etc. over objects of the third category.5 Now any possible elemen-

tary proposition will have one of the following logical forms: φ
1
a, φ

1
φ

2 
G, or  

φ
1
φ

2
φ

3
φ

4
. Accordingly f

1
b, f

1 
f
2 
A and f

1 
f
2 
f
3 
f
4
 will be meaningful propositions 

of our language, while f
1
A,  f

1 
f
2 
b,  f

1 
f
1 
B,  f

1 
f
2 
f
3
 and  f

1 
f
1 
f
2 
f
3
 are to be taken as 

meaningless sequences of signs.6 Moreover, it must be understood that f
1
 f

2
 f

3
 

is not a possible value of  f
1
 f

2
 G. The values of this function are  f

1
 f

2
 A,  f

1
f
2
B,  

f
1
 f

2
 C,  f

1
 f

2
 D and f

1
 f

2
 E.

An elementary propositional function is obtained from an elementary 
proposition through substitution of variables for names. Any such function is 
associated with the totality of its values, and in their relation to that function 
these values are said to be “formally determined”. If these totalities of values 
are taken as totalities of signs (as opposed to symbols), they can be described. 
As they are formally determined, we have (so to speak) a “recipe” to build 

4  In all contexts involving the mention of a symbol I will make an autonimous use of the symbol, 
i.e. in these contexts I will not use quotation marks in order to make reference to the symbol 
itself.

5  It should be observed that if an ontological category has only a finite number of objects, the 
corresponding syntactical category must have the same (finite) number of names, and langua-
ge will incorporate exactly one variable for each name. This is an immediate consequence of 
the convention establishing that different variables range over different objects. f

1
a & f

2
a, for 

instance, is not a possible value of  the propositional function f
1
a & f

2
b. For exactly the same 

reason, we could not introduce a third variable in the first category: f
1
a & f

2
b & f

2
g would have 

no value at all. That is not a logical form of our hypothetical logical space.

6  In the first two cases, because a name of the wrong category is being used in the last position. 
In  the fourth case because the “arity” is wrong — “ f

1
f
2
f
3
” is not a proposition of our hypothe-

tical language exactly by the same reason that “John is to the right of” is not a proposition of 
everyday language. In the second and fifth cases because the same name appears in different 
positions, something which is excluded by the formation rules we have laid down. I will the-
refore assume that no “repetition of names” is admissible inside an elementary proposition of 
our hypothetical language. Although I do think that this assumption would have to hold in 
general for the Tractatus, I won’t give arguments here to make this point. I am just taking “non-
-repetition” as a special feature of the hypothetical language under consideration.
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these signs. Thus, for instance, f
1
a and  f

1
b is a formally determined totality of 

propositions, since these are all the values of  f
1
a. By the same token f

1
a, f

1
b, 

f
2
a, f

2
b, f

3
a, f

3
b, f

4
a,…etc. is a formally determined totality as well: these are 

all the values of the propositional function φ
1
a. The only difference is that in 

this case we have an infinite totality — a circunstance indicated by the use 
of the three dots followed by the expression “etc.”. As this infinite totality is 
presupposed in the use of the variable itself, it must be viewed as formally 
determined. It corresponds to a logical form of our language.

The simplest way of determining a totality of propositions is to enumerate 
them. Unfortunately it only works when we are dealing with finite totalities. 
We may use the Greek letter x as an ancillary variable ranging over the mem-
bers of any formally determined totality. A bar over a variable will indicate 
that the totality of its values is under consideration. The symbol

x = f
1
b, f

1 
f
2
D

will mean that f
1
b and f

1
f
2
D are all the values of x to be considered in a given 

context. Accordingly, if we write

x = φ
1
a

we mean that the propositions in the scope of the propositional variable x 
are all the propositions which are values of the function φ

1
a. Finally, we may 

combine both methods and write, for instance

x = φ
1
φ

2 
G, φ

1
φ

2 
φ

3
φ

4

In this case, both f
2 

f
3
B  and f

2 
f
1 

f
5 

f
3
 will be among the infinite number of 

propositions falling within the scope of the variable x.
By means of direct enumeration and simultaneous denial we can define 

any truth-operation over a finite number of operands. Let 

x = p
1
, ..., p

n

and

N' [x] 
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be the simultaneous negation of all propositions within the scope of x. It is 
clear that N'[N'[x]] will be equivalent to a disjunction of all the propositions 
enumerated. On the other hand, if we make

x = N'[p
1
] ..., N'[p

n
]

then N'[x] will be equivalent to a conjunction of p
1
, ..., p

n
. 

Quantification makes its entrance as soon as we adopt the second method 
of formal selection, that is to say when we use the propositional variable x to 
range over all the values of a propositional function. Let

x = φ
1
a

In this case, N'[N'[x]] will be the proposition (∃φ
1
)φ

1
a - a disjunction of the 

infinite (but formally determinate) totality of propositions f
1
a, f

2
a..., f

n
a, etc. 

The conjunction of these propositions can be analogously achieved, giving 
rise to universal quantification.

Quantifiers can be defined, but not eliminated. They were defined for the 
most basic situations alone. When iterated, they must be actually present. 
No contortion will give us (∃φ

1
)(∀φ

1
)φ

1
φ

2
A without passing through the 

infinite totality

(∀φ
2
)f

1
φ

2
A,  (∀φ

2
)f

2
φ

2
A, ...,  (∀φ

2
)f

n
φ

2
A

This totality is formally determinate only because it is the totality of values of 
a propositional function, viz. 

(∀φ
2
)φ

1
φ

2
A

The original proposition can be written using the definition of the existential 
quantifier in terms of formal selection and simultaneous denial:

N'[N'[(∀φ
2
)φ

1
φ

2
A]]

Eliminating the universal quantifier, we get

N'[N'[N'[N'[φ
1
φ

2
A]]]]
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Which is equivalent to N'[N'[φ
1
φ

2
A]], i.e. (∀φ

1
)(∀φ

2
)φ

1
φ

2
A. And it is obvi-

ous that (∃φ
2
)(∀φ

1
)φ

1
φ

2
A and (∀φ

1
)(∀φ

2
)φ

1
φ

2
A say quite different things.  

We could circumvent the problem marking the variable to be considered in 
each step, but this is exactly the task variables are supposed to do. Marked 
variables will only give us quantifiers under an awkward disguise. I’d rather 
use them openly.

Recognizing quantifiers as essential logical tools is one thing; admitting 
the existence of propositions that could not be built from elementary ones 
with the help of simultaneous denial and the mechanisms of formal selec-
tion is quite another. The whole problem is that formal selection must be 
made step by step. Let us take the elementary proposition f

1
f
2
A as our point 

of departure. Selecting this proposition alone (i.e., by direct enumeration), 
we arrive at a formally determinate totality – [f

1
f
2
A] – to which we can apply 

simultaneous denial: N'[f
1
f
2
A]. More briefly, N'[f

1
f
2
A]. Substituting a variable 

for the name f
2
, we get a propositional function and a new totality associated 

to it. Applying simultaneous denial to this totality, we arrive at N'[N'[f
1
φ

2
A]]. 

Now we can freeze this step using a quantifier

(∀φ
2
)f

1
φ

2
A

and proceed without ambiguities. 

The most original logical device to be found in the Tractatus is formal selec-
tion of a “series of forms”. A totality of propositions is given by a “series of 
forms” when it can be inductively characterized. We can express the induc-
tion rule by means of an “expression in brackets” of the form [p, x, O'x], 
where p is the first proposition, x is any proposition in the series, and O is the 
formal procedure giving the “successor” of x. Negation provides the simplest 
example. The series

p
N'[p]
N'[N'[p]]
etc.

can be written as [p, x, N'x]. We may call this a “dull series”, since it unfolds 
itself by a monotonous alternation of two propositions. Even so, it is a series 
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of forms. We can select the whole series writing a bar over the expression in 
brackets. In this case,

N'[p, x, N'x]

is a contradiction, while

N'[N'[p, x, N'x]

is a tautology.

We can also write the “dull series” given above using exponents to count the 
number of times the operation N was applied to the basis:

N0'[p]
N0+1'[p]
N0+1+1'[p]
etc.

It is obvious that we are not using numbers to count apples or trees. We are 
just counting how many times an operation was applied to a basis, or (more 
exactly) expressing a proposition as a result of applying a recursive operation 
a certain number of times. It is important to notice that no quantifiers are 
involved in this kind of counting. As Wittgenstein says, numbers are used in 
language as “exponents of operations” – abbreviations made possible by the 
recursive nature of an operation like N. 

Arithmetical operations can be defined using the logical operation N 
alone. We first define the symbol Nv'x (where the variable x stands for what-
ever proposition we like):

N0'x = x
Nv+1'x = N'Nv'x

Then we define addition:

Nv+'x = Nv'N'x
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By hypothesis, x is a proposition, and so both N'x and Nv'N'x must be prop-
ositions as well. Using the decimal system of abbreviation, we have, e.g.,

N2+0'x = N2'N0'x = N2'x = N'N'x

Now we can use the symbol (Nv)'x  to express the result of  applications of 
the (complex) operation Nv over the basis x. More exactly,

(Nv)0'x = x
(Nv)'x = Nv'(Nv)'x

And we can define

Nvx'x = (Nv)'x

Here are two examples of how these definitions can be applied to “prove” 
arithmetic properties:

a) N3x0'x = (N3)0 'x = x = N0'N0'N0'x = (N0)3 'x = N3x0'x

b) N3x2'x = N3'N3N0'x = N3'N3'x
= N'N'N'N0'N'N'N'N0'x
= N'N'N'N0'N'N'N'x
= N'N'N'N0'y (where y = N'N'N'x)
= N'N'N'y
= N'N'N'N'N'N'N0'x
= N6'x

Some general (“algebraic”) laws such as

Nv+(+)'x = N(v+)+'x

can be established directly: Nv+(+)'x = Nv'N+'x = Nv'N'N'x = Nv'N'y (where y 
is the proposition N'x) = Nv+'y = Nv+N'x = N(v+)+'x. Other laws can only be 
proved by induction, e.g. Nv+'x = N+v'x.

As applied to a single proposition, N is the usual denial operation. Using 
the logical properties of this operation (as shown in the corresponding truth-
table), we could prove such general laws as (N2)'x = x. This is simply another 
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way of saying that couples of contiguous negations cancel each other. Now 
let us consider another operation – an even “duller” one. We may call it T. If 
x is a proposition, then T'x will be true no matter the truth-value of x. Now it 
is obvious that (T2)v'x = x will not hold, while Tv+'x = T+v'x will be in perfect 
logical order, provided we repeat for T the definitions of the exponents and 
operations on exponents we built for N. These definitions are not essentially 
linked to any particular operation. They just give expression to the general 
idea of “recursion”. For let O be any recursive operation you want to consider 
– be it N, T, or any other whatsoever. When we define the symbol Ov'x we 
give expression to the circumstance that recursive operations can be indefi-
nitely applied to their own results. The same can be said of a symbol like 
O5'O7'x. Have we applied the operation O seven times? Now we may take this 
partial result as a basis to begin a new series of five successive applications 
of the same operation. “Five plus seven” is just a short way of saying that. 
Numbers are exponents of recursive operations, and arithmetic is the general 
“theory” (better to say “technology”) of recursion.

Is it? As we said, numbers are used to count apples and sheep, not succes-
sive performances of operations like N. Dull operations like N and T do not 
even correspond to any use of numbers in ordinary language. They are “dull” 
exactly because they give rise to dull “series of forms”. Let us take “it is raining” 
as our basis. In English, the series p, N'p, N'N'p, etc. would be written more or 
less like this: “It is raining”, “It is not true that it is raining”, “It is not true that it 
is not true that it is raining”, etc. Dullness apart, the fact is that we cannot find 
any number at work here. In our everyday language, we never use the word 
“zero” to say that it is raining, nor the word “one” to say the contrary.

We use numbers to count objects – if not apples and books, at least our 
“logically simple” objects f

1
, f

2
, ..., f

n
, ..., A, ..., E, a and b. Wittgenstein’s strat-

egy is to show that counting objects is just a special case of counting suc-
cessive performances of logical operations. Given the Tractarian convention 
governing the use of variables (different variables, different arguments), the 
propositions of the series

∙(∃φ
1
)φ

1
a

[∙(∃φ
1
)(∃φ

2
)φ

1
a. φ

2
a] . [(∃φ

1
)φ

1
a]

[∙(∃φ
1
)(∃φ

2
)(∃φ

3
) φ

1
a. φ

2
a . φ

3
a] . [(∃φ

1
)(∃φ

2
)φ

1
a. φ

2
a]

etc.
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say that “there is no object φ
1
 such that φ

1
a”, “there is exactly one object φ

1
 

such that φ
1
a”, “there are exactly two objects φ

1
 and φ

2
 such that φ

1
a and 

φ
2
a”, etc. It will be convenient to use a more economical notation for series 

like this:

(E0 φ
1
) φ

1
a

(E1 φ
1
) φ

1
a

(E2 φ
1
) φ

1
a

etc.

The series can be recursively defined: it unfolds according to a definite trans-
formation rule. Let this rule be called O

1
. The series of forms can now be 

written in the “square brackets” notation:

[(E0φ
1
)φ

1
a, x, O

1
'x]

Accordingly, 

[(E5φ
1
)φ

1
a, x, O

1
'x]

will begin affirming the existence of five such objects, and then proceed to 
six, seven, eight, and so on. In both cases, the transformation rule is exactly 
the same - O

1
. 

Consider now the series

(E0φ
1
)φ

1
a . (E0φ

1
)φ

1
b

(E1φ
1
)φ

1
a . (E1φ

1
)φ

1
b

(E2φ
1
)φ

1
a . (E2φ

1
)φ

1
b

etc.

and call O
2
 the transformation rule involved in it. Writing p for (E0φ

1
)φ

1
a . 

(E0φ
1
)φ

1
b, the expression in brackets will be 

[p, x, O
2
'x]
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and the proposition

N'[N'[p, x, O
2
'x]]

will say that one proposition of the series is true. In other words, the proposi-
tion as a whole says that the number φ

1
's of ’s such that φ

1
a is identical to the 

number of φ
1
’s such that φ

1
b. 

This is perhaps the most interesting feature of Wittgenstein’s logic. It does 
not have any place for “higher order” quantifiers. All quantifiers are, so to 
speak, on the same level: they all range over objects of a certain kind, there 
being no “hierarchy” to stratify the kinds. But language does not loose the 
power of expressing logical relations that were expressed in the logic of Frege 
and Russell through the use of second-order quantifiers. We may say that “the 
number of… is identical to the number of…” without having to affirm the 
existence of a “relation” obeying to such and such conditions. We just have 
to (i) specify a series of forms by means of its first member and its transfor-
mation rule, (ii) select the totality of members of the series, and (iii) apply a 
truth-operation over this totality. 

Let me give two other examples, showing how far this method can lead 
us. The expressions “there is at least one…”, “there are at least two…”, there 
are at least three…”, etc. can be used to build a series of forms, e.g.

(∃φ
1
)φ

1
b

(∃φ
1
)(∃φ

2
)φ

1
b . φ

2
b

(∃φ
1
)(∃φ

2
) (∃φ

3
)φ

1
b . φ

2
b . φ

3
b

etc.

More briefly,

(∃1φ
1
)φ

1
b

(∃2φ
1
)φ

1
b

(∃3φ
1
)φ

1
b

etc.
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Now we form a compound series:

(∃1φ
1
)φ

1
b . (E0φ

1
)φ

1
a

(∃2φ
1
)φ

1
b . (E1φ

1
)φ

1
a

(∃3φ
1
)φ

1
b . (E2φ

1
)φ

1
a

etc.

Let O
3
 be the transformation rule governing the development of this se-

ries, and let q be the proposition (∃1φ
1
)φ

1
b . (E0φ

1
)φ

1
a. The proposition  

N'[N'[q, x, O
3
'x]] says that the number of φ

1
’s concatenated with b is greater 

than the number of φ
1
’s concatenated with a. The proposition is not asserting 

that there is a finite number of φ
1
’s concatenated with b, but it implies that 

there is a finite number of φ
1
’s concatenated with a. As a matter of fact, when 

we affirm that at least one of the propositions of the series

(∃0φ
1
)φ

1
a

(∃1φ
1
)φ

1
a

(∃2φ
1
)φ

1
a

etc.

is true, we are affirming that there is a finite number of φ
1
’s concatenated with 

a. Simultaneous denial of all propositions in this series says that there in an 
“infinite number” of φ

1
’s concatenated with a.

 So we may talk about an “infinite number of objects”. In spite of 
this, “infinite” is not a kind of number, and there is no place for a hierarchy of 
different kinds of infinity. Numbers always appear as exponents in the truth-
functional building of complex propositions, and the number of steps in any 
such building is always finite. We know, for instance, that O

3
2 'q is (according 

to the conventions given above) the proposition 

(∃3φ
1
)φ

1
b . (∃2φ

1
)φ

1
a
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while O
3
∙'q, understood as a shorthand for the (supposed) proposition that 

(supposedly) comes after all propositions in the series [q, x, O
3
'x], has no 

meaning at all.
A special (and important) feature of our hypothetical language is that 

quantification is limited by the possible values of the quantified variable. I 
can write (∃a)f

1
a meaning f

1
a ∨ f

1
b, but (∃3a)f

1
a has no meaning at all. I don’t 

have in my language three different variables ranging over the objects a and b. 
Adding a new variable g will not do, since a “function” like f

1
a . f

1
b . 

 
f
1
g will 

have no values. I simply run out of names. If you say “Just add new names to 
the language!”, Wittgenstein’s answer would be - “Meaning what?”. 

Better not to use quantifiers when we have a limited stock of names. Usual 
truth-functions can do the same work at no risk. The propositions ∙(∃a)f

1
a, 

(∃1a)f
1
a and (∃2a)f

1
a can be written as ∙ f

1
a.∙ f

1
b, f

1
a ∨ f

1
b and f

1
a f

1
b. Analo-

gous cases will be handled analogously.
It obvious that arithmetic must not wait for the final analysis of language 

in order to know if it has logical foundations or not. Even if there were just 
two objects a and b, and a solitary possibility in the logical space, even so we 
should be able to build series like

ab
∙ ∙ ∙ ab

∙ ∙ ∙ ∙ ∙ ∙ ab

etc.

Let O
4
 be the operation governing the series. The proposition O

4
12 will keep 

being identical to the proposition O
4

5+7'ab, and “5 + 7 = 12” will keep being a 
correct logical rule. Arithmetic is a “method of logic”. It abbreviates that part 
of logic involved in recursive logical operations like N, T, O

1, 
O

2, 
O

3
, or any 

other operation defined in terms of truth-functions and formal methods of 
selection. This was Wittgenstein’s early version of logicism.


