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Abstract 

Conservativeness is an important property of extensions. Its model
theoretic counterpart, expansiveness, provides a useful sufficient condition 
for conservativeness, but they are not equivalent, even under very severe 
restrictions. This paper examines the causes of this phenomenon, emphasiz
ing extensions by constants. Some simpler characterizations for conservative
ness are provided and finite conservative extensions are shown to be 
equivalent to Skolem extensions. 
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Resumo 

Uma propriedade importante de uma extensão é ser conservativa. Sua 
contrapartida em termos de modelos, expansividade, fornece uma condição 
suficiente bastante útil para uma extensão ser conservativa, mas estes dois 
conceitos não são equivalentes, nem mesmo sob restrições bastante severas. 
Este trabalho examina as causas desse fenômeno, enfatizando extensões por 
constantes. Apresentam-se algumas caracterizações simplificadas de extensões 
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conserva tivas e mostra-se que as extensões conserva tivas finitas são equivalen
tes às extensões de Skolem. 

Palavras chave : 

Extensões conservativas, expansão de modelos, extensões de Skolem, 
extensões por constantes, Lógica Matemática, especificações formais. 

1. lntroduction 

This paper examines conservative extensions and those that satisfy the 
usual model-expansion criterion for conservativeness, emphasizing extensions 
by constants, even though some of the results can be extended to the case of 
addition of function symbols, as well. The causes of failure of this criterion are 
illustrated and examined, and then conservative extensions by constants are 
characterized. Finally, the finite conservative extensions by constants are 
shown to be exactly the Skolem extensions, which do satisfy the above 
model-theoretic criterion. 

The concept of conservative extension is very important in mathematical 
logic, many of its uses, for instance in proving relative consistency, being due 
to the fact that they provide a way of preserving consistency (see, e.g. 
[Enderton 72; Shoenfield '67; Smirnov '86] . They can also be regarded as 
encompassing severa! useful generalizations of the familiar extensions by 
definitions [Veloso + Veloso '90] . 

Conservative extensions are also often used in the context of formal 
specifications [Byers + Pitt '90, p. 196] . They are employed, for instance 
in [Ehrig + Mahr '85; Turski + Maibaum '87; Maibaum + Veloso + Sadler 
'84; Veloso '871, for dealing with program development by stepwise 
refinement and abstract data types. They are also useful in formalizing 
some important intuitive ideas [Polya '57] concerning problems, solu
tions, analogy and problem-solving methods [Veloso+ Veloso '81; Veloso 
'84; Veloso '88]. 

There are two natural ways of formalizing this concept, namely in terms of 
either the theories themselves or their models. It has been known that, in 
first-order logic, the semantical version is strictly stronger than the other one. 
Let us call « non-smooth » those extensions that are conservative according to 
the first version but not according to the second one. ln this paper we examine 
more closely the causes of this phenomenon, showing some typical ways to 
obtain non-smooth extensions and characterizing the conserva tive extensions 
by constants. 

The structure of this paper is as follows. The next section reviews some basic 
concepts, notations and results. Section 3 examines the causes of non-expan
siveness by presenting and illustrating some typical ways of obtaining non-



On Conservatíve and Expansíve Extensious 89 

smooth extensions. Then, section 4 presents some model-theoretic properties 
of conservative extensions and uses them to investigate the behavior of finite 
models. ln section 5 we provide a simple characterization for the conservative 
extensions by constants. Then, section 6 characterizes the finite conservative 
extensions by constants as those obtained by the addition of Skolem constants, 
which are expansive. Finally, section 7 presents some concluding remarks and 
comments. 

2. Preliminaries 

Let us first review some basic concepts and notations to be employed 
throughout the paper (for more details, see, for instance, [Shoenfield '67; 
Enderton '72; van Dalen '89] .) 

By a language L we mean a first-order (possibly many-sorted (Enderton 
'72, p. 277]) language consisting of logical and extra-logical symbols 
[Shoenfield '67, p. 14; van Dalen '89, p. 61] . We generally assume L to 
include the logical symbol � for identity. As usual, a strncture A for L 
consists of an assignment of a realization A Is] to every extra-logical symbol 
s, respecting the syntactical declarations [Shoenfield '67, p. 18; Enderton 
'72, p. 79] . We say that language L' is a s11b-language of language L" (which 
we denote by L' ç; L") iff L" can be obtained from L' by lhe addition of 
some new extra-logical symbols (together with appropriate syntactical 
declarations). If L' ç; L" and the structure A' for L' is the restriction to L' 
of the structure A" for L", then we call A' the red11ct to L' of A" and use 
A" 1 L' to denote A'; in this case we also call A" an expansion (to L") of A' 
[Shoenfield '67, p. 43; van Dalen '89, p. 116] . 

By a theory (presentation) T we shall mean a language L together with a set 
S of axioms, which are sentences of L; we often say that T is over L. A structure 
A is said to be a model of T (denoted by A I= T) iff A is a structure for L that 
satisfies ali lhe axioms of T (denoted by A I= S). We use the notation T I= F (or 
S I= F) to state that F is a logical conseq11ence of T (or of S) and Cn(T) for the set 
of consequences of T. By the theory of a structure A for L we mean the set Th(A) 
of ali sentences of L holding in A. 

We say that T" (over J.:' with set of axioms S") is an extension of T' (over J.: 
with set of axioms S'), which we denote by T' ç; T", iff L' i: J.:' and Cn S' i: Cn S". 
Also, T' and T" are called eq11iva/ent iff they are extensions of each other; notice 
that, in this case, they have the sarne language. We call an extension T' ç; T" 
co11Servative iff for every sentence F of J.:, whenever T" I= F then T' I= F as well 
[Shoenfield '67, p. 41, 42] . 

One of the motivations for conservative extensions is the fact that they 
preserve consistency. lndeed, the following remark should be clear IShoenfield 
'67, p. 42] . 
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Remark. Conservativeness and consistency 
Jf the extension T' ç; T" is conservative, then T' is consistent 
iff T" is consistent. 

One can characterize conservative extensions by means of the concept of 
restriction of a theory. Given a theory T" o ver L" and a sub-language L' ç; L", 
by the restriction of T" to L' we mean the set of all sentences of L' that are in 
Cn(T") [Shoenfield '67, p. 95 (exerdse 9)). Then, it is easy to see that the 
extension T' ç; T" is conservative iff T' is equivalent to the restriction of T" to 
L'. ln fact, the restriction T' of T" to L' is, up to equivalence, the smallest theory 
over L' such that the extension T' ç; T'' is conserva tive. 

Unfortunately the above characterization of conservative extensions in 
terms of restrictions is not very useful, since it amounts to a simple restatement 
of the definition. A more convenient sufficient condition for conservativeness 
is provided by means of reducts, which may be regarded as model-theoretic 
counterparts of restrictions. We then have a simple model-expansion criterion 
[Shoenfield '67, p. 65 (exercise 3.b)]. ln order to formulate it more clearly, we 
introduce the following concept. We shall call an extension T' !: T" expansive 
iff every model A: of T' can be expanded to a model A:' of T". 

Proposition. Model-theoretic criterion for conservativeness 
lf the extension T' ç; T" is expansive then it is conserva tive. 

Some simple properties of these concepts are given in the next immediate 
result. 

Lemma. Properties of conservative / expansive extensions 
Consider extensions T ç; T' ç; T". 
(a) lf extension T s; T" is conservative (resp. expansive), then sois T ç; T'. 
(b) If T ç; T' and T' ç; T" are conservative (resp. expansive), then so is 

T ç; T". 

Simple and well-known examples of conservative extensions are the 
extensions by definitions. An extension T' ç; T" by definitions actually 
satisfies a stronger version of the above model-theoretic criterion, in that 
each model of T' has a unique expansion to a model of T" [Shoenfield '67, 
p. 60, 61] 

We shall often have occasion to write a formula F in the form F(x,, ... , 
Xm, y,, ... , y"' z1, .•• , zr) when we wish to emphasize the fact that the displayed 
variables are among those with free occurrences in F. ln this case, given 
constants C1, ••. , Cn, F(x1 , ... , X

nv 
C1, .•• , Cn, Z1, .•• , Zp) is the result of the 

simultaneous replacement of every free occurrence of Yi in F by cj, for j = 1, 
... , n. 
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3. Non-expansiveness and its causes 

ln this section we wish to examine some aspects of non-expansiveness. First, 
lei us call an extension non-smooth iff it is conservative but not expansive. Thus, 
the main aims of this section are 

1. to establish the existence of non-smooth extensions; 
2. to exhibit some typical examples of this phenomenon; 
3. to show some canonical ways of obtaining such extensions; 
4. to examine the causes of this phenomenon. 

Toe main problems faced in obtaining a non-smooth extension T" ofT' tum 
out to be guaranteeing (i) conservativeness and (ii) non-expansiveness, for one 
cannot rely on the simple model-expansion criterion of the proposition in 
section 2. Toe solutions we propose are, for (i), make T' complete, and, for (ii), 
make T" force its models to be « large enough ». By a complete theory we mean 
a maximally consistent one, in that, for any sentence F of its language, either 
For its negation is a consequence of the theory [Enderton '72, p. 145] . 

The following simple lemma characterizes the conservative extensions of a 
complete theory. We shall have occasion to use it quite often in the sequei, in 
view of our suggestion above to ensure conservativeness. 

Basic lemma. Conservative extensions of complete theories 
If T' is complete, then an extension T" of T' is conserva tive iff it is consistent. 
Proof. 
(⇒} Well known (see the remark in section 2). 
(<=) Consider a sentence F of L'. If F é Cn(T'), since T' is complete, 
� F E Cn(T'}, whence � F E Cn(T"), so Fé Cn(T"), since T'' is consistent. 
QED 

Toe structure of this section follows a pattern that should be made clear. 
We present five typical examples. Each one of them can be generalized to a 
canonical way of obtaining non-smooth extensions. But, against each example 
some objections can be raised. These objections are faced in the next example, 
until we reach lhe end of the section, where we show a general way of 
obtaining non-smooth extensions provided the original theory has a somewhat 
« infinite » nature. We shall generally consider the language L' of the original 
theory T' to be countable. This is for the sake of simplicity only; the examples 
and arguments are easily carried over to other infinite cardinalities. 

3.1. L" much bigger than L' 
We shall first establish the existence of non-smooth extensions, without 

worrying about their cardinalities. 
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Example 1. 
Consider a countably infinite structure Q in an appropriale language L' and 
lel T' = Th(Q) (For inslance, take Q as lhe rational numbers). 
The sei of axioms to be added is as follows. Consider an uncounlable sei C 
of new conslants and set L'' = L' u C. Now let Expld(L') be the set of 
senlences of the form � e "'d for ali distinct constanls e and d in C, and take 
T" = T' u Expld(L'). 

A similar example was independently presented by [Byers + Pitt '90) 
Actually, it tums out to be an inslance of a general phenomenon, to be 
presented in the next proposition, the proof of which will establish thal 
T" = T' u Expld(L') is a non-smooth exlension of T'. 

Proposition 1. 
Any complete theory T' with infinite models has some non-smoolh 
extension. 

Praof. 
Pick an uncountable set C of new constants and form L'' = L' u C. Now lcl 
Expld(L') consisl of lhe sentences � e =ed for ali distincl conslants e and d of 
C, and sei T" = T' u Expld(L'). 
Notice that any model of T" musl be uncounlable. 
But, in view of Lõwenheim-Skolem theorem, T' has some countably infinile 
modcl A. Such a model A of T' cannot be expanded to a model of T''. 
On the other hand, T" is consistent, as can easily be seen by compactness 
(any finite subset of Expld(L') can be satisfied in an appropriate expansion 
of A). 
Therefore, by our basic lemma, we have that T'' is a non-smooth exlension 
of T'. 
QED 

ln view of the above, we have established 

Conclusion 1. 
There exist non-smooth extensions. 

But, the example presented may be deemed somewhat contrived. 

Objection 1. 

The cardinality of L'' is much bigger than that of L'. 

3.2. L" and L' with the sarne cardinality 
Wc now face objection 1 raised above by examining non-smooth exlensions 

wherc bolh languages have lhe sarne cardinality. 
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Example 2. 
Let us consider the structure N of the natural numbers with zero and 
successor in an appropriate language L' with O and S. We take T' = Th(N). 
Toe set of axioms to be added is defined as follows. For each natural number 
n e N, let n be the variable-free term S ... S O (with n occurrences of S). We 
pick a new constant e and add it to L' to form L''. We now set Unnam(L') = 
h C=n / n e N} and T" = T' u Unnam(L'). 

This example is again an instance of a more general phenomenon, to be dcalt 
with in lhe nextproposition, whose proof will establish that T" = T' u Unnam(L') 
is a non-smooth extension of T'. For this purpose, it is convenient to introduce 
some terminology and notation. We denote by Nam(L') the set of ali variable
free terms of language L'. We shall call a structure for L' named iff every element 
of its domain is the value of a variable-free term [Veloso '79; Veloso+ Veloso '89). 
We can now present a generalization of our example 2, where we shall see that 
this example relies simply on the fact that the standard model of the natural 
numbers is an infinite named structure. 

Proposition 2. 
Any complete theory T' with an infinite named model has some non
smooth extension. 

Proof. 
Pick a new constant e and add it to L' to form L". Now considcr 
Unnam(L') = h e =l / te Nam(L')}, and, finally, sei T" = T' u Unnam(L'). 
Consider an infinite named model A of T'. 
Notice that model A of T' cannot be expanded to a model of T", because A 
is named. 
But, T" is consistent, as can easily be seen by compactness (any finite subset 
of Unnam(L') can be satisfied in some expansion of A). 
Therefore, by the basic lemma, we can conclude that T'' is a non-smooth 
extension of T'. 
QED 

Thus, we have established 

Conc/usion 2. 
There exist non-smooth extensions with languages of the sarne cardinality. 

But, again one might object to our example. 

Objection 2. 

Toe original theory T' in example 2 is not finitely axiomatizable (see, e.g. 
[Enderton '72, p. 184 (exercise 6)1). 
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3.3. Finitely axiomatizable T' 
We now face objection 2 raised above by investigating non-smooth exten

sions where the original theory T' is finitely axiomatized, and both languages 
have lhe sarne cardinality. 

Example 3. 
Consider the structure M of the natural numbers with zero and successor 
with its usual ordering in an appropriate language L' with O, S and <. 
Let T' = Th(M). Notice that it is finitely axiomatizable (see, e.g. [Enderton 
'72, p. 178, 187 (corollary 32B)) . 
Toe sei of axioms to be added is defined as follows. We use once more the 
variable-free terms n for each natural n. Consider a new constant e, let 
L'' = L' u lcl, sei D = ln < e / n E N) and T" = T' u D. 

Again, we have an instance of a general phenomenon dealt with in the next 
proposition, whose proof will establish that theory T' = T' u D is a non-smooth 
extension of T'. For this purpose, it is convenient to introduce some notation. 
For each natural n, consider the sentence 

n-pred : 3 X1 3 x2 ..• 3 Xn [x1 < x2 A •.. A Xn < c/ 

We shall denote by Infprd(L') the set of all such sentences n-pred. Notice 
that each sentence n-pred is a consequence of T" of our example 3. We can 
now tum to our generalization of this example. 

Proposition 3. 
Any theory T with an infinite model has some complete extension T' that 
has non-smooth extensions. 

Proof. 
By Lõwenheim-Skolem theorem, consider a countably infinite 
model A of T; so that there i s  a bijection h between its domain 
A and the set N of lhe na turals. Add a new binary p redica te 
symbol p to the language to form L' and use the bijection h to  
induce the  ordering < o f  N on  A as a realization for p .  Thi s  gives 
an expansion A' of A so that h i s  an  isomorphism between the 
structures < A,  A' [p] > and <N, < >. Take T' = Th(A'). 
Pick a new constant e and add it to L' to form L". 
For each natural n, consider the following sentence of L'' 

n-pred : 3 XJ 3 x2 ... 3 Xn [p(x,, x2) A ••. A p(xn, e)]. 

We shall denote by Infprd(L') the sei of ali such sentences n-pred, and sei 
T" = T' u lnfprd(L'). 
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Notice that model A: of T' cannot be expanded to a model of T" in view of 
the ordering of N. 
0n the other hand, T" is consistent, as can easily be seen by compactness 
(any finite subset of Infprd(L') can be satisfied in some appropriate expan
sion of A:). 
Therefore, the basic lemma yields that T" is a non-smooth extension of T'. 
QED 

We can now state 

Conclusion 3. 

There exists a non-smooth extension of a finitely axiomatizable theory 
without increasing the cardinality of the language. 

But, one can still be dissatisfied with our example. 

Objection 3. 
The new symbols appear in infinitely many new axioms. 

3.4. Locally finite extension 
Let us now face objection 3 raised above by showing how to deal with the 

case of new symbols appearing in infinitely many new axioms, i. e. when it is 
not locally finite in the following sense. 

Call an extension locally finite iff each new symbol occurs only in finitely 
many new axioms. 

Example 4. 
Consider again theory T' presented in example 2. Pick a new constant 
Cn, for each natural n, and add them to L' to form the new language 
Finloc(L'). 
Now, consider the set Finloc(Unnam(L')), consisting of 
- the new versions of the axioms of Unnam(L') : � Cn : 11, 
- the new equality axioms : Cn =Cn+l, 
for every natural n. 
Notice that each new constant Cn occurs in at mos! 3 new axioms of 
Finloc(Unnam(L')). 
Also, among the consequences of Finloc(Unnam(L')), one finds � co :ll and 
Cn =Co, for every natural n. 

Example 4 shows a finitely localized version of the extension presented in 
example 2. But, one may very well complain that theory T' in examples 2 and 
4 is not finitely axiomatizable. To this we reply that we can apply the sarne 
trick to example 3. lndeed, we have here an example of a general construction, 
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which we shall now describe and then show that it preserves both conserva
tiveness and expansiveness. 

Consider an extension T" = T' v D, where lhe language L" of T" is 
obtained from the language L' of T' by adding a single new constant e. 
Choose a new constant e,, for each n E N, and add them to L' to form the 
new language Finloc(L'). Now, enumerate the sentences of D as F"' for 
n E N, and consider the set Finloc(D), consisting of the following sentences 
of Finloc(L') 

- the new equality axioms : Cn �cn+1, for n E N, and co �e; 
- the new versions of the axioms of D : FnCcn), for n E N 
(here Fn(Cn) is the result of replacing every occurrence of e in Fn by Cn)
Finally, call Finloc(T") = T' v Finloc(D) the finile /ocalizalion of lhe extension 
T" :;;:: T' u D. 

Proposition 4. 
Consider an extension T" = T' v D. 
(a) Finloc(T") is finitely localized. 
(b) Finloc(D) is equivalent to an extension by definitions of the sei D of new 
axioms. 
(e) Toe extension T' ç;; T" is conserva tive (resp. expansive) iff the extension 
T' !;;; Finloc(T") is so. 

· · 

Proof. 
(a) Each new symbol Cn occurs only in two new equality axioms and perhaps 
in Fn(Cn). 
(b) Lei Def consist of lhe sentences Cn �e, which define Cn in terrns of e, for 
n E N. Thus, D v Def is an extension by definitions of D, which is easily 
seen to be equivalent to Finloc(D). 
(e) ln view of (b), the extension from D to Finloc(D) is both conserva tive 
and expansive. Hence lhe lemma in section 2 yields lhe desired conclu
sions. 

QED 

Now, we can finitely localize the extension in example 3; then proposition 
4 yields 

Conclusion 4. 
There exists a non-smooth, locally finite extension of a finitely axiomatiza
ble theory without increasing lhe cardinality of the language. 

But, one can still be less than happy. 

Objection 4. 
The original theory T' ,is complete. 
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3.5. T' not complete 
Let us now deal with objection 4 raised above by examining the case of 

extensions of a perhaps incomplete theory T'. 

Example 5. 
Consider the language L' with O and S of example 2. As axioms for theory 
T' we take lhe following two sentences 

V x � Sx zO and V x V y (Sx zSy -+ x zy). 

Notice that theory T' is incomplete; since, for instance, neither V x � Sx z x nor its 
negation is a ronsequence of T' (see, e.g. [Enderton '72, p. 178, 184 (exercise 6)1). 
Now, pick a new constant e and let L'' = L' u {e} . As in example 2, we set 
T" = T' u Unnam(L'), where as before, Unnam(L') = h e z n / n E N} . 

Again, this example is an instance of a general phenomenon, dealt with in 
the next proposition, whose proof will guarantee that T" = T' u Unnam(L') is 
a non-smooth extension of T'. 

Proposition 5. 
Any theory T' with a named model that only has infinite models has some 
non-smooth extension. 

Proof. 
As in the proof of proposition 2, pick a new constant e and let L'' = L' u {e}. 
Now, sei T" = T' u Unnam(L'), where once more, Unnam(L') = h e z t / 
t E Nam(L')}. 
Consider an infinitenamed model A ofT'. Notice that it cannot be expandcd 
to a model of T", bccause it is named. 
lt remains to show conservativeness. For this purpose, consider a sentence 
F of L' and assume F E Cn(T"). 
Then, by compactness, T' u h e z ti A •. •  A � e = ln} F F, for some finite 
{t,, ... , tnl ç; Nam(L'). But then, (see, e. g., the rule E! in [Enderton '72, p. 
117, corollary 24H)) we have T' u { 3 x (� x = t1 A •.• A �  x = ln)I F F. On 
the other hand, since every model of T' must be infinite, we already have 
T' F 3 X ( � X z t, A ••• A � X z ln). 
Therefore, T' F F, as well. 
QED 

Thus, we have established 

Conclusion 5. 
There exists a non-smooth, locally finite extension of an incomplete finitely 
axiomatizable theory without increasing the cardinality of the language. 
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Our examples and results have a flavor of infinity. Indeed, two recurring 
features have been 

- the original theory T' has (only) infinite models, and 
- the extensions T" have infinitely many new axioms. 
We shall examine them in the sequei; the first one in the next section, and 

the second one in section 6. 

4. Model-theoretic properties of conservative extensions 

This section deals with some model-theoretic properties of conservative 
extensions. We first present a characterization of conservative extensions, 
which is slightly simpler than the usual one. We then use this characterization 
to examine the behavior of finite models under a conservative extension, 
showing that they always expand. Tilis will clarify why our examples in the 
preceding section involved only infinite models. 

We first recall some simple definitions and known results. 
Consider structures A and B for language L. We say that A is elementarily 

equivalent to B (denoted by A =  B) iff for every sentence F of L, A I= F iff B I= F. 
We call A an elementary s11bstnict11re of B (denoted by A ,;;  B), or B an elementary 
extension of A, iff A ç B and for every assignment s of variables into A, whenever 
A l= F  [s] then B l=F [s] as well. The following well-known connection between 
these concepts (see, e. g., [Shoenfield '67, p. 74; van Dalen '89, p. 125]) will be 
used in the sequei. 

Remark. Elementary substnicture implies e/ementary eq11ivalence 
If A is an elementary substructure of B then A is elementarily equivalent to 
B. 

We can now present some model-theoretic characterizations of conserva tive 
extensions, which generalize the model-expansion criterion in section 2. 

Theorem. Model-theoretic characterizations of conservativeness 
For an extension T' ç T" the following are equivalent. 
(a) The extension T' ç T" is conserva tive. 
(b) Every model A of T' has an elementary extension B that can be expanded 

to a model C of T". 
(e) Every model A of T' is elementarily equivalent to a structure B that can 

be expanded to a model C of T". 
Proof. 

(a ⇒ b) See [Shoenfield '67, p. 95, 96, (exercise 9.c)] . 
(b ⇒ e) Clear, in view of the preceding remark. 
(e ⇒ a) Consider a sentence F of L' in Cn(T"). Let A be a model of T'. So, 
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by (e), there exists some model C of T" such that C I L' s A. Then, C I= F 
with F in L', hence C I L' I= F and A I= F as well. Therefore F E Cn(T'). 
QED 

Toe above characterizations are generally not too easy to use in practice. 
First, (b) is not very easily applicable because it can be hard to establish that 
A ,;; B, since this involves practically ali formulas of L'. ln this respect, (c) is 
slightly simpler, in that checking elementary equivalence involves only sen
tences of L', but still ali of them. Even though there are some model-theoretic 
characterizations of elementary equivalence, one still has to face the task of 
producing such a B from any given A, in either case. 

We now use this characterization to examine the behavior of finite models 
under a conservative extension, showing that they always expand. This will 
be based on the following well-known lemma (see, e. g., [Enderton '72, p. 96 
(exercise 17)]). 

Lemma. Elemenfary equivalence with finiteness implies isomorphism 
If A is elementarily equivalent to B and A is finite, then A is isomorphic to B. 

Proposition. Expansion of finite models 
If T" is a conservative extension of T', then any finite model of T' can be 
expanded to a model of T". 

Proof. 
Let A be a finite model of T'. Then, by part (e) of the above characterizing 
theorem, there exists some model C of T" such that C I L' s A. Since A is 
finite, by the preceding lemma, it is isomorphic to C I L'. Hence, there exists 
D isomorphic to C, and so D I= T", such that D I L' � A. 
QED 

Toe next immediate corollary explains why our examples of non-smooth 
extension in the preceding section involved theories with only infinite 
models. 

Corollary. 
If T' only has finite models, then any conservative extension of T' is 

expansive as well. 

5. Characterizing conservativeness 

ln this section we shall reexamine some of the examples of non-smooth 
extension presented in section 3. This will suggest an explicit characterization 
of non-smooth extensions in terms of the axioms added. This, in tum, will 
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provide a new characterization for conservative extensions by lhe addition of 
constants, which is more easily applicable. 

Let us reexamine the examples of section 3 involving the addition of a single 
new constant, namely examples 2, 3 and 5. 

First, let us consider examples 3.2 and 3.5, with O and S. 
Toe sei D of axioms added to T' consisted of the sentences of the form F(c), 

where F(x) is the formula � x = n, for each variable-free term n. A sen
tence 3x G(x), where G(x) is a conjunction of some formulas F(x)'s, asseris the 
existence of an element distinct from those mentioned. 

Now, lei us examine example 3.3, involving O, S and <. 
Toe sei D of axioms added to T' consisted of the sentences of the form 

F(c), where F(x) is lhe formula n < x, for each variable-free term n. A 
sentence 3x G(x), where G(x) is a conjunction of some formulas F(x)'s, 
asseris the existence of an element greater than those mentioned. 

Notice that the following remarks apply to these three examples. First, any 
sentence 3x G(x) as above is in Cn(T') (a fact that was actually exploited in the 
proof of proposition 5 in section 3 in order to establish the conservativeness 
of the extension in example 3.5). Second, in the (standard) model presented 
one cannot jointly satisfy all the formulas F(x). 

We shall now show how these ideas can be generalized to provide an 
explicit characterization of non-smoothness, as well as a better characterization 
for conservativeness, for extensions by the addition of constants. 

Consider a theory T' over language L'. Lei L" be obtained form L' by the 
addition of some new symbols and lei T'' = T' u D, where D is a set of sentences 
of L''. We call D r011gh with respect to T' iff the extension T' ç;; T'' is non-smooth. 

We consider first the case where a single new constant is added to L' to form 
L". 

By means of an appropriate alphabetic variant, if necessary, we may 
assume that variable x does not occur in any sentence of the set D of new 
axioms. For each sentence F of L", let F(x) be the result of replacing every 
occurrence of e in F by lhe new variable x. (Notice that if e does not occur 
in F, then F(x) is F and 3x F(x) is equivalent to F itself.) Now, form lhe set 
D(x) = {F(x) / F E DI . Lei &D(x) be lhe sei of all finite conjunctions of 
formulas of D(x), and, finally, let 3xD be the set {3x G / G E &D(x)I of 
sentences of L'. 

We call D unlimited with respect to T' iff every sentence in 3xD is a 
consequence of T', but there exists some model N of T' where lhe sei D(x) is 
not jointly satisfiable. 

The following lemma is immediate. 

Lemma. /ointly satisfiability vs. expandability 
The sei D(x) is jointly satisfiable in a structure N for L' iff N can be expanded 
to a model N' of D. 
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We can now provide our explicit characterization of non-smooth extensions, 
by characterizing rough seis of new axioms. 

Proposition. Roughness vs. unlimitedness (single new constant) 
A sei D is rough with respect to T' iff D is unlimited with respect to T'. 

Proof. 
Given the preceding lemma, it suffices to verify that conservativeness is 
equivalent to "preservation of conjunctions". 
(=>) Given a finite conjunction G(x) in &D(x), G(c) E Cn(D). Thus, 3x G(x) 
is a sentence of L' in Cn(T"), whence it is in Cn(T'), by conservativeness. 
(<=) Consider a sentence H of I: in Cn(T"). By compactness, H E Cn(T' v IGJ ), 
for some finite conjunction G of sentences of D. Then, (see, e. g., the rule EI in 
[Enderton '72, p. 117, corollary 24H]) T' v 1 3x G(x)} F H. But G(x) E &D(x), 
hence 3x G(x) E 3xD. Thus, T' F 3x G(x), whence T' F H. 
QED 

We now indicate how to generalize the preceding considerations to the 
case where a sei C (ai most countable) of new constants is added to L' to 
form L". 

By means of an appropriate alphabetic variant, if necessary, we may 
assume that no variable x," with even index occurs in any sentence of D. 
Now, enumerate lhe sei C of new constants as e,, for k E N, and consider 
lhe substitution s that replaces each new constant e, by variable x,.. Lei s(F) 
denote lhe result of applying substitution s to formula F of L", and consider 
the sei s(D) = ls(F) / F E D} . Lei &s(D) be the sei of ali finite conjunctions 
of formulas of s(D) and lei 3s(D) consist of the existential closures of the 
sentences of &s(D). 

We call D unlimited with respect to T' iff every sentence in 3s(D) is a 
consequence of T', but there exists a model N of T' where lhe sei s(D) is not 
jointly satisfiable. 

We again have that s(D) is jointly satisfiable in a structure N for I: iff A' can 
be expanded to a model N' of D. We can now see that our previous arguments 
extend to this case, thereby providing our explicit characterization of non
smooth extensions, by characterizing rough seis of new axioms, involving at 
most countably many new constants. 

Theorem. Roughness vs. unlimitedness 
Lei language L" be obtained form L' by lhe addition of an at most countable 
set C of new constants. Given a sei D of sentences of I:', D is rough with 
respect to T' iff D is unlimited with respect to T'. 

We now have our simpler characterization of conserva tive extension by the 
addition of new constants, which is more easily applicable. 
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Theorem. Conservativeness vs. expansíveness and tmlímítedness 
Let L" be obtained from L' by the addition of an at most countable sei C of 
new constants. Consider a theory T' over L' and its extension T" = T' u D, 
where D is a set of sentences of L". Then, the extension T' ç;; T" is 
conservative iff 
either it is expansive, 
or else, D is unlimited with respect to T'. 

Toe usefulness of this theorem in checking conservativeness stems form its 
simplicity. It tells us that when the simple model-theoretic criterion of section 
2 fails, then conservativeness will be equivalent to an explicit property of the 
sei of new axioms. 

6. Finite conservative extensions 

Ali the examples of conserva tive, but non-expansive, extensions in section 
3 involved the addition of infinitely many new axioms. ln section 5 we have 
characterized the conserva tive extensions by the addition of constants. So, the 
question that remains concerns conservative extensions with only finitely 
many new axioms. ln this section, we will show that such extensions are 
always expansive. 

We shall be using the idea of Skolem constant, a simple special case of 
Skolem function (see, e.g. [van Dalen '89, p. 144-146]). 

Consider a formula F of L' of the form F(y,, ... , y.), with no variables other 
than the displayed ones occurring free in it. Let language L'' be obtained from 
L' by lhe addition of some new constants, e,, ... , e. being among them. Replace 
every free occurrence of each variable y, in F(y1, ••• , y.) by the new constant e,; 
this yields the sentence F(c,, ... , e.) of L". This sentence F(c1 , ••• , e.} is called a 
Skolemizntion of the sentence 3y, ... 3y. F of L'. 

Now, consider theories T', over L', and T", over L''. We call T" a Skolem 
extension of T' iff every new axiom of T" is a Skolemization of some conse
quence of T'. Notice that, in this case, every new constant of L" occurs in a 
single new axiom of T", called its constraining axiom. 

Toe following lemma recalls a simple result concerning these concepts. lts 
proof is simpler than its well-known counterpart for Skolem functions, in that 
it does not require the Axiom of Choice. 

Lemma. Expansiveness and conservativeness of Skolem extensions 
Jf T" is a Skolem extension of T', then 
(i} T" is an expansive extension of T', 
(ii} T" is a conserva tive extension of T'. 

Proof 
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(i) Consider a model X of T'. 
Let F(c1, ... , Cn) be a new axiom of T". It is a Skolemization of 3y1 ... 3yn F(y1, 
... , yn), which is a consequence of T'. Thus, we know that F(y1, ... , yn) is 
satisfiable in X. Thus, by the lemma in section 5, X can be expanded to a 
structure which is a model of this new axiom. 
Since each new constant occurs in a single new axiom, we can thus expand 
X to a model X' of T". 
(ii) follows from (i) in view of lhe model-expansion criterion in section 2 (it 
is also a special case of the theorem on functional extensions [Shoenfield 
'67, p. 55]). 
QED 

We can now characterize the conservative extensions by a sei of new 
constants formed by lhe addition of only finitely many new axioms. 

Theorem. Finite conservative, expansive and Skolem extensions 
Consider a language L' and lei L'' be obtained from L' by the addition of a 
sei C of new constants. Consider a theory T' over L' and its extension T" 
over L'' obtained by adding to T' a finite sei D of sentences of L''. Then, lhe 
following are equivalent. 
(a) The extension T' ç T" is conservative. 
(b) The extension T' ç;; T" is equivalent to a Skolem extension. 
(e) Toe extension T' ç T" is expansive. 

Proof. 
(a ⇒ b) Let F be the conjunction of lhe new axioms in D. Clearly, 
T' u {F) is equivalent to T". We shall now show that T' u {F) is 
equivalent to a Skolem extension of T'. First, F has only finitely many 
new constants, say n of them. By resorting to an alphabetic variant, if 
necessary, we may assume that variables y1, ... , yn do not occur in F. 
Now, let P be obtained from F by replacing each new constant by a 
corresponding new variable Yk• Then, F will tum out to be equivalent 
to a Skolemization of 3y1 ... 3yn P. But, the latter is a sentence of L' 
in Cn(T"), whence in Cn(T'), by conservativeness. 
(b ⇒ e) By the preceding lemma. 
(e ⇒ a) By the model-expansion criterion in section 2. 
QED 

Toe above theorem shows that, for extensions by constants with only 
finitely many new axioms, conservativeness and expansiveness are equivalent, 
because ali such extensions tum out to be Skolem extensions. This has some 
interesting consequences. First, it clarifies why our examples of non-smooth 
extensions in section 3 involved the addition of infinitely many new axioms. 
Second, it shows that Skolem extensions, in addition to being conservative, 
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tum out to be the most general conservative extensions by addition of 
constants. 

7. Conclusions 

We have examined conservative and expansive extensions, emphasizing 
extensions by constants. The causes of conservativeness without expansive
ness have been illustrated and examined, and then conserva tive extensions by 
constants have been characterized. Finally, the finite conservative extensions 
by constants have been characterized as the Skolem extensions, which are 
always expansive. 

The interest in conservative extension is due to its importance both in 
mathematical logic and in formal specifications. ln the former, they are useful, 
for instance, in proving relative consistency [Enderton '72; Shoenfield '67; 
Smimov '86], and also because they encompass severa! useful generalizations 
of extensions by definitions [Veloso + Veloso '90] . ln the latter, they are used, 
for instance in program and specification developl]lent by stepwise refinement 
[Ehrig + Mahr '85; Turski + Maibaum '87; Maibaum + Veloso + Sadler '84; 
Veloso '87], as well as in formalizing some useful intuitive ideas [Polya '57) 
conceming problems, solutions, analogy and problem-solving methods 
[Veloso + Veloso '81; Veloso '84; Veloso '88] . 

We have started in section 2 by reviewing some usual terminology, notation 
and results of mathematical logic and introducing the concept of expansive 
extension. Section 3 has the character of a «  Socratic » dialogue, in that we have 
examined lhe causes of non-expansiveness by presenting and illustrating a 
series of ways of obtaining non-smooth (i. e., conservative but not expansive) 
extensions, each one of them being improved by facing the objections raised 
against the preceding one. The conclusion of this process is that lhe possibility 
of obtaining non-smooth extensions seems to stem from some « infinite 
character » of the original theory. 

ln section 4 we have characterized conservative extensions by means of 
model-theoretic properties, which have been useful in investigating the be
havior of finite models. Then, in section 5 we have provided a simple 
characterization for the conservative extensions by constants, by showing that 
they are either expansive or the axioms added are unlimited (the existential 
closures of a translation of their finite conjunctions are consequences of the 
original theory, but this theory has a model where the set of new axioms cannot 
be jointly satisfied). Then, in section 6 we have characterized the finite 
conservative extensions by constants as those obtained by lhe addition of 
Skolem constants, which are expansive. 

These results provide some interesting conclusions. First, the finite models 
can always be expanded if the extension is conservative, and a conservative 
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extension by constants with only finitely many new axioms is always expan
sive. Thus, the only way to obtain non-smooth extensions by constants is by 
the addition of infinitely many new axioms to a theory with infinite models. 
This settles lhe question hinted at in section 3, by corroborating the feeling that 
the possibility of obtaining non-smooth extensions hinges on some « infinite 
character » of the original theory. ln section 3, we have illustrated some typical 
ways of obtaining such extensions. 

Another interesting conclusion to be drawn from our results concerns 
Skolem extensions. We have shown in section 6 that any extension by constants 
with finitely many new axioms is equivalent to a Skolem extension, in that it 
amounts to the addition of Skolem constants corresponding to consequences 
of the original theory. Thus, Skolem extensions, in addition to being always 
expansive, provide the most general way of obtaining finite conservative 
extensions by constants. 

We have emphasized extensions by the addition of constants, because we 
wished to stress the existence of non-smooth extensions even under very 
severe restrictions. But, some of our considerations and results carry over, with 
appropriate adaptations, to extensions by function symbols. For instance, the 
above conclusion that Skolem extensions, in addition to being expansive, are 
the most general finite conservative extensions still applies to some extensions 
by functions symbols. One simple, but interesting, such case occurs when the 
new axiom has the form V x F(x, f(x)), F(x, y) being a formula of L' where the 
term f(x) is substitutable for y, with x being a list of variables x,, ... , x, [Veloso 
+ Veloso '90] 
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