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The first aim of this note is to describe an algebraic structure, more primitive 
than lattices and quantales, which corresponds to the intuitionistic flavour of 
Linear Logic we prefer. This part of the note is a total trivialisation of ideas 
from category theory and we play with a toy-structure a not distant cousin of 
a toy-language. 

The second goal of the note is to show a generic categorical construction, 
which builds models for Linear Logic, similar to categorical models GC of 
[de PJ, but more general. The ultimate aim is to relate different categorical 
models of linear logic. 

The first part of the note consists of two sections. The first section introduces 
lineales; the second adds some structure to lineales, compares our work to 
other approaches and show the main result of this part. 

The second part of the note consists of four sections, which run along similar 
lines to part 1. ln section 3 we define our basic categorical construction, section 
4 adds the extra structure corresponding to section 2 and shows the main result 
of part II. Section 5, adding the modalities « ! » and « ? », has no corresponding 
section in part !, as we have not even tried to find the right notion of « ! » in 
the restricted set-up of lineales. Section 6 describes some preliminary con
clusions and further work. 

1. lntroducing lineales 

We start by considering a very familiar structure, a commutative monoid 
•n the category of posets. We are thinking of posets as a restriction of the 
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general notion of categories. That is the opposite of what people normally do 
in CS when they explain the notion of a category as a generalization of a poset. 
We call a commutative (or symmetric) monoid in the category Poseis a 
pre-lineale. [ln the more general set-up we're thinking of a monoid object in 
the category of categories.J 

Definition 1 A pre-lineale is a poset (L, :5) wilh a given compalible symmetric monoidal 
slructure (L, o, e). Thal is, a sei L equipped wilh a binary relalion « :5 » salisfying: 

a :5 a for ali a in L (rejlexivity) 

a,;; b and b,;; e=> a :5 e (transilivily) 

a :5 b and b :5 a => a = b (anlisymelry) 

logelher wilh a monoid slnicture (o, e) consisling of a « multiplication » o : L x L ➔ L 
and a dislinguished objecl « e » of L, such thal lhe following ho/d : 

(a o b) o e= a o (b o e) (associativity) 

a o e = e o a = a (identily) 

a o b = b o a (symmelry) 

The slnictures are compatible in lhe sense lhal, if a :5 b, we have a o e :5 b o e, for ali e in L. 

We write a quadruple (L, :5, o, e) for a pre-lineale. Note that, even if we want 
to think of «o» as a form of conjunction, we do not have a o a= a (idempotency) 
nor a ,;; e for ali a in L. Thus the relation between lhe order structure and lhe 
multiplication is not as tight as in a sup-lattice. 

But a pre-lineale is not the toy-structure we want to play with. A pre-lineale 
corresponds, in lhe more general set-up of categories, to a symmetric monoidal 
category and we are interested in symmelric monoidal closed calegories. To 
trivialise this notion we first define 

Definition 2 Suppose L is a pre-lineale and a, b E L. If there exisls a largesl x E L 
such lhal a o x,;; b then lhis elemenl is denoled a -o b and it is called the relative 
pseudocomplement of a wrt b. 

Thus, by definition, if a -o b exists in a pre-lineale L then 

a o (a -o b),;; b 

if a o y :5 b for some y, then y :5 a -o b 
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Definition 3 A lineale is a pre-lineale (L, <;, o, e) such that a -o b exists for ali a 
and b in L. 
Since we defined a lineale to be a simplification of the notion of a symmetric 
monoidal closed category, we have an obvious proposition 

Proposition 1 A lineale (L, <;, o, e, -o) has the following properties : 

1. If a <; b, for any e in L, e -o a <; e -o b and b -o e <; a -o e; 

2. a o b <;e� a <; b -o e 

The proof is very easy, it only uses the definition of -o and L. Observe that 
the item 1 in the proposition says, in the more general set-up of categories, that 
-o : L x L ➔ L is a « bifunctor », contravariant in its first coordinate and 
covariant in the second coordinate, while item 2 says there is an adjunction 
between functors O o b : L ➔ L and b -o () : L ➔ L. 

Another observation is that as e o a <; a for any a E L, we know e <; a -o a 
and a <; a -o e for any a E L. 

Note that if we denote by J_ any element of L and write (a)1 for (a -o J_) we 
have : 

(ii) a o (a -o _!_) <; J_ � a o al. <; J_ implies a ,; a1 -o J_ = ali by prop 1.2. 

Properties (i) and (ii) are called by Dunn the Intuitionistic Contraposition. 

Definition 4 A Heyting lineale is a lineale (L, <;, o, e, -o) equipped with a given 
compatible symmelric monoidal strncture (□, _!_) weakly de Morgan-dual to« o ». That 
means that 

lhe given structure (□, _!_) salisfies 

- (associalivity) a □ (b □ e) = (a □ b) □ e 

- (symmelry) a □ b = b □ a 

lhe structure (□,_!_) is compatible with (L, <;, o, e) means that, as before, if a<; b 
lhen for any e in L, a □ e<; b □ e 

lhe object J_ is lhe identity for □ 

aD_l_=_l_Da=a 
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we have associa tive (or absorptive) Jaws 

(a D b) o e s a □ (b o e) 

a o (b □ e) s (a o b) □ e 

Note that, if we write (a)i for (a ----<> .L), .L lhe identity for □, we can 
show 

ai □ bSa----<> b 

simply using symmetry of « o » and the distributive law above, as follows 

a o (ai □ b) s (a o a i) □ b = 

(a oa----<> .L) □ b s .L □ b = b 

With definition 4 we are trying to capture lhe (intuitionistic !) notion that 
conjunction and disjunction are not de Morgan dual -as they are in Classical 
Logic, but instead, we have: 

We can prove, 

Proposilion 2 A Heyting linea/e L satisfies 

(a) a i  o bi s (a □ b)i, 

To show (b), as (a o b)i =(ao b)----<> .l, it is enough to show (ai □ hi) o (a o b) s .L, 
easy as 

ai □ (.L o a)= (é □ .L) o a= é o as .L 

To show (a) ai o bi s (a □ b)i we use the sarne kind of reasoning, as it is 
enough to show (ai o bi) o (a □ b) s .L. � 
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Note that as e is the identity for o and J_ the identity for O, 

By proposition 1.2, as e o J_ s J_ we have e s J_ -o J_ = J_ �, thus J_ � = e. But 
in the weakly-dual case we cannot guarantee that � = J_ as we only know 
that 

Note that the condition of compatibility says in the more general set-up of 
categories that D is a covariant bifunctor. 

We would calJ lhe symmetric monoidal structure (□, _j_) de Morgan-dual to 
« o » if we had equality in condition (a) and (b). ln that case we would call lhe 
Jineale a strong Heyting lineale. 

One may think that names were badly chosen as a lineale already satisfies 
what maybe be calJed a Heyting condition, namely 

aobSc<=>aSb-oc 
but lineales have no notion of disjunction whatsoever, while Heyting lineales 
can be restricted to Heyting algebras if o satisfies a universal property (cf. 
below in def. 5). 

2. Additive lineales 

A (Heyting) lineale is characterized by its « multiplicative » structure given 
by (S, o, -o, e) (perhaps also (□, _!_)). But we can have another « Iayer » of 
structure, called its additive structure. 

Definition 5 A semi-additive (Heyting) lineale is a (Heyting) lineale equipped 
with an extra symmetric monoidal stmcture, notation (x, 1) such that given a and b 
in L, a x b satisfies 

axbsa and axbsb 
lf m is such that m S a and m S b then m S a x b 

Note that a x b is defined as a binary greatest Iower bound; that having 
binary glb's we can easily define finite n-ary ones and that 1 is the empty-set 
glb, which means that for aJJ a e L, a S 1. ln particular e S 1 (and J_ S 1, if it is 
present). Also (x, 1) being a symmetric monoidal structure means 
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(a x b) x e = a x (b x e) 

axb=bxa 
ax1=1xa=a 

Martin Hyland and Valeria Paiva 

A semi-additive lineale corresponds to a symmetric monoidal closed 
category with products in the more general framework. 

Definition 6 An additive (Heyting) lineale is a semi-additive (Heyting) lineale 
equipped with an another symmetric monoidal structure, notation ($, O) such that 
given a and b in L, a © b satisfies 

a :S a © b and b :s a © b 
if a :S n and b :S n then a © b :S n 

Dually, O :S a for any a E L, in particular, O :S J., O :Se and O :S 1. 
Observe that the conditions in the definition 5 and 6 above are the 

restrictions to the poset set-up of the conditions on the existence of products 
and coproducts. They could be described in terms of adjunctions, in this case 
Galois connections, to a diagonal functor, t,. : L ➔ L x L. Note that they do 
determine a lattice structure in L. 

If the four constants J., e, O and 1 are distinct we have a picture like 

but they may coincide. 
Trivial examples of additive Heyting lineales are Heyting algebras (where 

o and x and D and + coincide and O = l. and 1 = e) and Boolean algebras (as 
before plus ail = a). 
Proposition 3 Jn an additive Heyting lineale we have the distributive /aws 

a o (b © e) = (a o b) E!) (a o e) 

a □ (b x e) :s (a □ b) x (a □ e) 

Notice that the first law is a direct consequence of the fact that the 
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« category » L is a symmetric monoidal closed one, as (:1) is a coproduct and 
coproducts are preserved by functors which have right-adjoints. The semi-law 
is a consequence of x being a categorical product, as b x e $ b and b x c $ e 
implies a □ (b x e) $ a □ b and a □ (b x e) $ a □ e, so 

Comparison with other approaches 
It seems reasonable to compare the approach taken here with lhe one by 

Hesselink using Girard monoids. Quite apart from the fact that Girard monoids 
are based on/par the linear connective less amenable to intui tive explanations, 
Hesselink's approach is based on the classical equivalence between A--> B and 
� A v B. It seems to us that one should strive for lhe more general set-up - in 
this case the intuitionistic one - as that allows us to restrict ourselves to lhe 
classical case, when (and iO wanted. 

A strong Heyting lineale can be seen as a Girard monoid wrt D and a 
Girard monoid restricts to a phase structure, the model for linear logic 
provided by Girard himself in [tcs60]. Also a Girard monoid is a generaliza
tion of the de Morgan monoids in Dunn, lhe semantical model for relevance 
logic. 

The definition of a Heyting additive lineale is also very similar to some 
work done by Ginsberg and also Fitting on bilattices. Again the difference is 
that the structure on the horizontal direction need not be a lattice. TI1e 
conditions forced on us by the (categorical) adjunction are not strong enough 
for that, but of course a bilattice is a rather special case of an additive Heyting 
lineale. 

Rules and axioms of Linear Logic 
Axioms : 

Structural Rules 

A 1-A 
1-1 

r 1- 1, t. 

(identity) 
.l I-

r, o 1-t. 

rl-t. (permutation) 
arl-�t. 

r 1-A, t. A, r' 1-t.' (cutJ 
r, r 1-t.',.l 

Logical Rules : 

(var1) r 1- B, t,, 

r, B� 1- t,, 
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Multiplicatives : 

(unit) r 1-6 
' r, 1 1---6 

(unit,) r 1-6 
r 1-.L,6 

(®,) 
r, A, B l-6 

r,A®B l-6 (®,) 
r 1- A, 6 r 1- B, 6' 
r, r' 1- A ® B, 6, 6' 

(q) r, A 1---6 r·, B 1-6' 
r,r,A□B 1-6, 6' 

< > r 1- A, 6 r, B 1-6' -<>, r, r·, A-<> B 1---6', 6 

Additives : 

(Q.) 
r 1-A,B, 6 

r 1-ADB,6 

r A 1---B (-<>,) r 1- A-<> B • 

<'-> rl-A, 6 r1-B, 6 
"" r i= A & B, LI. 

r, A 1-6 
(&,) r, A & B i= 6 

r, A 1---6 r, B 1-6 (Ell,) 
r, A Ell B 1-6 

(Ell) rl-A,6 ' r 1-A EB B, 6 

r, B 1-6 
r,A &B 1- 6 

r 1 - B, LI. 
r 1-A Ell B,  6 

• Observe that in rule (-<>,) we only deal with one formula on the right-hand 
side of the tumstyle, according to our intuitionistic flavour of Linear Logic. 

Then we have another obvious proposition 

Proposition 4 A11 additive Heyting Lineale (L, !>, o, -<>, O, e, .L, +, x, 1, O) is an 
algebraic model of Linear Logic, as described above. 

Just read atomic propositions in LL as elements of L, 1--- as leq, ® as o and 
the other connectives and constants for their homonimous. 

Note that the posei reflection of GC is a lineale, the simples! non-collapsed 
one (see figure above). 

3. A categorical construction 

Suppose C is a concrete linear category with products, by that we mean a 
concrete syrnmetric monoidal closed category with products. And suppose that 
L is an object of C endowed with a (Heyting) lineale structure (!>, o, -<>, e) 
(perhaps also (O, .L)). To make notation manageable we write : 

• [ U, V] for lhe internai hom in C, 
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U ® V for the tensor product in C, with identity I; 

U x V for the categorical product in C, with identity 1. 

Then we can construct the category MtC, which has as objects morphisms of 
C of the form U ® X----"-¼ L. One such object is written as (U .-'!+-X ) and called A. 

Given two objects, says A = (U .-'!+-X) and B = (V .-4-Y), the morphisms 
of MtC are pairs of morphisms of C, f :  U ➔ V and F :  Y ➔ X such that the 
following diagram is satisfied, 

U ® F  
U ® Y - -- U ® X  

1® 
y l l ª 

V ® Y - -- L 

where the diagram being satisfied means that given u ® y in U ® Y, the 
composite morphism a •  (U ® F) applied to (u ® y) as an element of L is smaller 
than p • (f ® Y )  applied to (u ® y). Simplifying, morphisms are pairs of maps 
in C (f, F), f :  U ➔ V and F :  Y ➔ X such that 

a (u, Fy) :;; P (f u, y) 

lt is easy to verify that Mt C is a category with an abundance of symmetric 
monoidal structures. 

Proposition 5 The constrnction abave really defines a category MLC. 

Clearly identities are pairs of identities of C, composition is composition in 
each coordinate and associativity is an immediate consequence of the as
sociativity in C. 

Linear structure of MiC 
One of the possible symmetric monoidal structures of MtC is : 

Definition 7 Given two objects A =  (U .-'!+-X) and B = (V .-flt-Y) in M,C we 
define A ® B their tensor product as follows : 

A ®  B = (U ® V ª ® � /V, X} x [U, Y}) 

The morphism « a ®  P » intuitively says a ®  p (u, v, f, g) = a (u, fv) o p (v, gu). 
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To define the morphism a ® p consider the following map, which we call a : 

(U ® V) ® ([V, X] x [U, YJ) U ® V ® •1i u ® V ® [V, X] U ® ""'1 U®X �L 

Similarly we define (U ® V) ® ([V, X) x [U, Y)) �L. Then to get a® P we 
pair ii and ji' and use the multiplication « o » of L, as follows 

(U ® V) ® (IV, X] x [U, Y]) <a. �> L x L � L 

Proposition 6 The construction above induces a bifunctor, covariant in 
both coordinates, with identity IM given by (I +--'--+--- 1), where lhe morphism 
I ® 1 = 1 �L jus/ picks up the object « e » from L. 

Note that ® is not a categorical product, for instance we have no 
projections, even if C is a  Cartesian closed category. 

Definition 8 Given two objects A =  (U �X) and B = (V ,-1!.+-Y) in MLC we define 
[A, B) their internai hom as follows : 

[A, BJ = ([U, V] x [Y, X] ª - � U ® Y) 

The morphism « a -<>  p » intuitively says (a-<> p) (f, F, u, y) = a (11, Fy) -<> P (fu, y). 
The definition of the morphism a -o p is similar to the definition of ® above. 
First consider maps a and ji' :  

([U, V] x [Y, X]) ® (U ® Y) •, ®U ®Yi[U, V] ® U ® Y ""1 ® Y  V ®  Y _t_.L 

([U, V] x [Y, X]) ® (U ® Y) "' "  u " y [Y, X] ® U ® Y u "  '"'1 ,U ®X � L 

Then, to obtain a -o p we pair ii and ji' and compose the result with -o, 
considered as a map from L x L to L : 

([U, V] x [Y, X]) ® (U ®Y) <a, Jl> L x L - L 

Note that if we consider lhe internai hom [A, A]=([U, U]x[X, X) eª T° ª U ® X), 
there is always a morphism from IM to it, 

I 1 

1 1 
[U, UJ x [X, X] +-E ---'ª'--+1 -"

ª-U ® X 

as C is symmetric monoidal closed with products and e $  a (11, x) -o a (u, x). 
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Proposition 7 The construction abvve i11d11ces a bifunctor, contravariant in its first 
coordinate and cvvariant in its second coordinate. 

Having defined both a tensor product and an internai hom, we want to 
prove that they provide us with a symmetric monoidal closed category. 

Proposition 8 The category MtC is a symmetric monoidal closed category. 
The proof is simple, one has to verify the natural isomorphism 

Hom (A ® B, C) "' Hom (A, [B, CJ) 

This can be done by looking at the diagram 

U ® V E ª f � {V, X] x [U, Y] u 
a X 

f 

w 
y 

z 

f, 

[V, W] x [Z, Y] � - y V ®  Z 

If the morphism (f, <fv [,>) is a Hom (A ® B, C), then given (u, v) in U ® V 
and z in Z, we know (a ® Pl (u, v, f1z, f,z) $ "f (f (11, v), z). 

That means, by definition of tensor, that a(u, f1zv) o P(v, f,zu) $ y (f (u, v), z). 
But as L is a lineale, 

a (u, f1zv) o P (v, f2zu) $ 'Y (f (u, v), z) "" a  (11, [1z11) $ P (v, f2zv) -o y (f (u, v), z) 
Now to show that (<f,f,>, f,) is in Hom (A, [B, C]) we have to show 

a (u, [1 (v, z)) $ <P -o y) (fii, [211, v, z) 
But (P -o y) (fu, /211, v, z) = P (v, f1uz) -o y (fuv, z) which we know, if 

transposing is allowed. 
If we have a Heyting lineale we can also define another bifunctor « O » of 

objects in MLC. 

Definition 9 Given two objects A =  (U <-"+-X) and B = (V ,4---Y) in MtC we define 
A □ B their /par operator as follows 

A □ B = (IX, V] x /Y, UI �X ® Y) 
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The morphism « a o p » intuitively says (a o P) (f, g, x, y) = a (x, gy) D P (fac, y). 
The definition of the morphism a □  p is similar to lhe definitions of ® and [-, -] 
above. First consider maps ii and � 

([X, V] x [Y, U]) ® (X ®  Y) •, ®X ®Y [X, V] ® X ®  Y) ""'1 " y V ®Y � L 

([X, V] x [Y, U]) ® (X ® Y) "2 "  x " y  [Y, U] ® X ®  Y) x "  eva! U ® X� L 

Then to obtain a D p we pair ã and � and compose lhe result with □, considered 
as a map from L x L to L 

([U, V] x [Y, X]) ® (U ® Y) � L x L -'='---. L 

Proposition 9 The operation A □ B defines a bifunctor □ : MLC x MLC ➔ MLC with 
identity given by the object J_M = (+-+- 1 J_ I), where lhe map J_ : 1 ® I = 1 ➔ L 
picks up lhe object J_ from L. 

4. Additive structure of MLC 

Now we want to define products and coproducts in MLC. To do that we 
need at least 

a semi -additive (Heyting) lineale 

(disjoint ?) coproducts in C. 

Note that it is not necessary to add products and coproducts to MLC at 
the sarne time. 

Suppose C is a linear category with coproducts. Then a form of dis
tributivity holds, namely 

U ® (V + W) = U ® V + U ® W 

As C is symmetric monoidal closed, the functor U ® (-) has a 
right-adjoint, [U, -], hence it preserves colimits and, in particular, initial 
objects and coproducts. 

Definition 10 Given two objects A= (U �X) and B = (V �Y) in MLC we 
define A & B their categorical product as follows : 

A & B = (U x V �X + Y) 
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The morphism « ex & p » intuitively says (ex & p)  (u, v, (�:» = ex (11, x) x P (v, y). 

But note that, despite the similarity with previous definitions, lhe multi
plication « x » is not used, what is used is the structure on C, as an elemcnt of 
X +  Y is either (x, O) or (y, 1 )  but not both. 

Proposition 10 Theoperation « & » above definesa bifimctor & : MLC x MLC ➔ Mr.C, 
with identity given by 1 M = (1 � O) and A & B is really a categorica/ product in MLC. 

To define the morphism (U x V)® (X + Y) " & 1 L in C, which corresponds 
to the object A & B in MLC, we do : 

n1 ®1 + 1t-i @I (u ) (U x V) ® (X + Y) = (U x V) ® X +  (U x V) ® Y --➔ U ® X +  V ® Y 14 L 

Projections are trivially given by projections in C in the first coordinate and 
canonical injections in the second coordinate. 

a 

We have a diagonal functor /1 :  MLC ➔ MLC x MLC 
a 

U X 

l a & ª  f 
U x U t-----+-- X + X 

given by the diagonal in C in the first coordinate and the canonical folding 
map in lhe second coordinate. 

To show the uni versai property of products we consider an object C = ( W <--+-Z) 
such that there are maps in MLC of the forrn 

w--- z 

g! � [e 
V t-----+--Y 
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Then there is a unique map in MLC from C to A & B, 

w 

<f, g> l 

U x V 

Dually we can define 

y 

IX & p l (
9 

X + Y  

Definition 11 Gíven two objecls A = (U <-"-+-X) and B = (V Jl.i--Y) ín M1,C we 
define A $ B theír categorical coproducl as follows 

A $  B = (U + V " Ell  p X x Y) 

The morphísm « a a, p » íntuítívely says (a a, Pl «::f ), x, y) = a (x, gy) a, p (fx, y). 
lt is another easy proposition to show that A a, B is a bifunctor with identity 

OM = (O � 1) and A a, B is a categorical coproduct. Note that as morphisms 
of C OM and lM are isomorphic, but not as objects of MLC. Note also that the 
additive structure of lhe lineale L is not used at ali. 

The category MLC was defined following the pattern of GC, so it is no 
surprise that 

Proposition 11 The category MLC is a model of Linear Logic as described before. 
The last observation in this section is that we can describe another useful 

monoidal structure in MLC. 

Definition 12 Given two objects A = (U i-"+-X) and B = (V + Y) in MLC we 
define A o B another tensor product as follows 

A o B = (U ® V  � X ® Y) 

The morphism « a o P » intuilively says (a o p) (11 ® v, x ® y) = a (u, x) ® p (v, y). 
Its usefulness will become apparent in the next section. 

5. Modalities in MLC 

Now the intention is to define a comonad in MLC to provide an interpreta
tion of the modality or exponential « ! » of Linear Logic. 
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We start by recalling the rules for the modality « ! ». These are : 

1. r, A 1- B  
r, / A 1- B  (dere/iction) 

III r I A I A 1- B (contraction) . r, / A 1-B 

II. r, ; ;-i B (weakeníng) 

/ r 1- A  
IV. ! r 1- / A (!) 

But as observed by severa! people, the four rules for the modality « ! » fali 
neatly into two pairs. The pair (11, III) has to do with putting back into the 
logic, in a controlled way, contraction and weakening and the pair (1, IV) makes 
« ! » look like the O modal operator of S4. 

Suppose C is a linear category which has countable coproducts (instead 
of finite ones as in the last section). Then using lhe well-known construction 
of MacLane ([CWM] p. 168 theorem 2) we can show that C has free 
(commutative ?) monoids, as C being symmetric monoidal closed the other 
condition in MacLane's theorem is automatically satisfied. Having free 
monoids means that there exists a functor F :  C -->  Mon C, which is left-adjoint 
to the forgetful functor U : Mon C --> C. ln other words, there is an adjunction 
<.F, U, 11, E> : C --> Mon C, which we write simply as F --1 U. 

The adjunction says that every map on C of the form, 

X� U (Y, llY, µy) 
corresponds, by a natural isomorphism, to a monoid homomorphism J of the form 

(X", llx•, µx•) �(Y, 11Y, µy) 
We write ( )• for the composite functor U • F :  C ➔ C, recall from MacLane that 
)( = li ieN X' and denote by (•, 11, µ) the corresponding monad in C. 

Note that the unit of the adjunction F --1 U, the natural transformation 
11 : C --> C takes any object X of C to the carrier of the free monoid x·. Also 
the co-unit of the adjunction e : Mon C --> Mon C takes any free monoid 
(X', 11•, µ•) arising from an arbitrary monoid (X, 11, µ) to itself. Thus 

e :  FU (M, 11, µ) = (M', 11•, µ•) --> (M, 11, µJ 

where the morphism e corresponds to « iteration » of the original multiplica
tion µ. 

Now, in this stronger version of the existence of monoids, the monad (•, 11, µ) 
is easily proved a strong monad, so there are morphisms 

[X, Y/c" IX, Y\ [)(, 'f'/c 
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and using these we can define the endofunctor below. 

Definition 13 The endofunctor S : MLC -+ MLC takes an object (U �X) of MLC 
to the object (U � X'), where intuitively uSet (x1, x2, ... , Xn) means uax, and 11ax2 
and ... and UCtXn. 
The object Sa of MLC is defined by the sequence of morphisms 

U ® X  ..!!....+ L  

U -+  [X, LI � [X", L°I 

U ®  X" -. C L.+ L 

So far so good and very similar to what happens in GC. But if we try to 
make another definition 

Definition 14 The endoftmctor T :  MLC -+ MLC takes an object (U �X) of MLC 
to the object (U 4- [U, X)), where i11t11itively uTaf means ,mft,. 

But to give the morphismin U®[U, X]� L we woukl need to «duplicate » U, so that 

U ® [U, XI �U ® U ® [U, XI � U ® X �L 

Also to obtain comonoids in MLC, which would satisfy rules (contraction) and 
(weakening), for instance 

U ® U  [U, X"I x [U, X"I 

we need U' s with some kind of structure. 
Thus the proposal at the moment is to take C with free comonoids, having 

free comonoids means that there exists a functor F, : C -+Common C, which 
is left-adjoint to the forgetful functor U, : Common C -+ C, ln other words, 
there is an adjunction <F,, U,, 11, E> : C -+ Mon C, which we write simply as 
F, -1 U,. 

The adjunction says that every map on C of the form, 

X ½U (Y, /y, 6vJ. 

rorresponds by a natural isomorphism, to a comonoid homomorphism 1 of lhe form 
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(X•, l)X', ÔX') 1-_. (Y, l)Y, Õy) 

We write ( ). for the composite functor U • F :  C ➔ C, and denote by (( );, 11, µ )  
the corresponding monad in C. 

Definition 15 The endofunctor F :  MLC ➔ MLC takes an object (U �X) of MLC to 
the objecl (U. ?-f!-X"), where intuitively uFa (x1, x2, ... , xn) means lha/ u can be shared 
out between u,, u2,as many times as necessary so that u,ax, and u2ax2 and ... and unaxn. 

But this definition of F has to be shown to work and this is work in progress. 

6. Further work 

Apart from making sure that the definition of the modality « ! » works 
properly, which seems to be clear from previous work on Hopf Algebras by 
Sweedler and others, it seems that the main work that remains to be done is 
to get things at the right levei of generality. The one adopted here seems clearly 
inadequate, as one would like to « change basis » on doing the construclion 
of MLC, i. e. one would like to have construclions MLC, with different L's. 

It is worth menlioning that there is some joint work in progress with 
Carolyn Brown from LFCS, Edinburgh connecting the quantales models for 
Linear Logic arising from Petri Nets to the dialectica-Iike ones proposed in 
Brown/Gurr, Lics'90, see [H&dP] for the extension that allows Pehi Nets with 
multiplicities >2. 
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