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Interpreting Reo Circuits 
as PDL models1

Interpretando Circuitos Reo 
como modelos PDL

Abstract

Reo is a coordination-based language with the proposal of connecting different 
systems and interfaces. It aims to develop communication between different systems 
with a high level of abstraction and without many restrictions. PDL is a multimodal 
logic tailored to reason about programs. It is proved to be sound, complete, decidable 
and has a simple Kripke semantics. This work intends to provide an interpretation 
of Reo circuits as PDL models. These are the first steps towards providing a dynamic 
logic tailored to reason directly about Reo circuits.

Keywords: Reo circuits; PDL models; coordination-based language; multi-
modal logic.
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Resumo

Reo é uma linguagem baseada em coordenação com a proposta de conectar 
diferentes sistemas e interfaces. Objetiva modelar a comunicação entre diferentes 
sistemas com um alto nível de abstração e sem muitas restrições. PDL é uma lógica 
multimodal adaptada para raciocinar sobre programas, consistente, completa, 
decidível e com uma semântica de Kripke simples. Este trabalho pretende fornecer 
uma interpretação dos circuitos Reo como modelos PDL. Esses são os primeiros 
passos para fornecer uma lógica dinâmica próppria para raciocinar diretamente 
sobre os circuitos Reo.

Palavras-chave: circuitos Reo; modelos PDL; linguagem baseada em coorde-
nação; lógica multimodal

1. Introduction

Reo [1] is a coordination-based language that emerged in the 90’s with the 
proposal of connecting different systems and interfaces, and develop commu-
nication between different systems. With a high level of abstraction and wi-
thout many restrictions, Reo’s range of possibilities is widefull. Reo is used in 
distributed and parallel systems and inter-process communication [4]. As a 
basis for its operation, Constraint Automata formalize its components.

Constraint Automata (CA) [4] are used to define a formal semantics for 
Reo. They allow us to analyse the modelling of a system as the behaviour 
of information over time. A Constraint Automaton extends finite automata 
theory twofoldly: (i) its input has a time condition and (ii) there exists a logi-
cal constraint to enable a transition.

Propositional Dynamic Logic (PDL) [6] is a logic tailored to reason about 
programs. A formalisation in PDL leads to the possibility of reasoning about 
the behaviour of programs. Such behaviour includes properties as a correc-
tion in relation to its requirements, fairness, liveliness and equivalence. A 
formula in PDL has the form “〈π〉p ” meaning that there exists an execution of 
the program π such that after it p is true, supposing that π halts.



159Interpreting Reo Circuits as PDL models

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.157-181, jul.-dez.2021

PDL has been widely used to reason about distributed systems. Some en-
codings and extensions of net systems were already proposed and compose a 
huge theoretical framework [5, 10, 11, 17, 18].

An example of PDL usage in industry can be found in [15], where IBM 
uses PDL to formalize the zSeries e-server, thereby guaranteeing properties 
such as a termination and determinism. XPath, which is a major element in 
the XSLT standard, may be encoded in PDL [12, 13].

This paper presents an encoding of CA in a PDL model. The goal is to 
translate a Constraint Automaton into a PDL theory and for this theory to 
build a PDL model. The input of the CA (Timed Data Stream) is translated to 
the valuation function of the model. It leads to the usage of PDL theoretical 
framework to reason about Reo circuits interpreted as Constraint Automata 
and is the first step towards a Dynamic Logic to reason diretctly about Reo 
circuits in a more expressive semantics. 

2. Related Work

Reo’s capabitiy of model real-world interaction scenarios has resulted in a 
great effort directed in formalizing means in order to verify properties of 
Reo models  [19, 20, 21, 22, 23, 24, 27, 29], with its application domain 
ranging from component-based software engineering to the verification of 
e-governance applications [29]. This has also contributed to the existence of 
Reo’s many formal semantics, each focusing on specific properties that can be 
captured in Reo models, such as time or action constraints [25].

The approach presented by Klein et al. [19] provides a platform to reason 
about Reo models using Vereofy1, a model checker for component-based sys-
tems, while Pourvatan et al. [24] employ Constraint Automata in reasoning 
about Reo models by means of symbolic execution. Kokash & Arbab  [20] 
formally verify Long-Running Transactions (LRTs) modelled as Reo connec-
tors using Vereofy, enabling expressing properties of these connectors in lo-
gics such as Linear Temporal Logic (LTL) or a variant of Computation Tree 
Logic (CTL) named Alternating-time Stream Logic (ASL). Kokash et al.  [8] 
encode Reo in mCRL2 model checker using Constraint Automata and its 
main variants, encoding their behaviour as mCRL2 processes and enabling 
the expression of properties regarding deadlocks and data constraints which 

1  http://www.vereofy.de

http://www.vereofy.de
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depend upon time. Mouzavi et al. [23] propose an approach based on Maude 
in order to model checking Reo models, encoding Reo’s operational seman-
tics of the connectors, and Li et al. [222,28] respectively propose a real-time 
extension to Reo, implementing new channels and relying on Stochastic Ti-
med Automata for Reo (STA) as its formal semantics, also providing a transla-
tion of STA to PRISM2 for model checking and a translation of Reo models to 
PVS. UPPAAL3 model checker has also been employed in the verification of 
Reo connectors employing the usage of Timed Constraint Automata [26] to 
build the corresponding UPPAAL model, and in the simulation of Hybrid Reo 
Connectors [27]. Zhang et al. [30, 31] employ Coq and Z3 proof assistants to 
reason over Reo connectors by encoding Reo’s connectors.

The usage of Constraint Automata as formal semantics for Reo is advan-
tageous when considering a systematic notion of a Reo connector. In this 
approach, states of the automaton denote its possible data configurations, 
enabling one to see “How the system behaves as a whole”. When not consi-
dering only Reo, Constraint Automata provides a formal basis to reason about 
general coordination modeling languages, not only Reo  [4]. The approach 
proposed in this paper presents an algorithm to encode Reo models denoted 
by Constraint Automata as PDL sentences, its soundness proofs and an im-
plementation of this algorithm.

3. Constraint Automata: a formal semantics to Reo

In this Section, we provide a brief overview over what is Reo, addressing its 
main characteristics regarding how it works, along with a modelling exam-
ple. We also introduce Constraint Automata, Reo’s formal semantic employed 
in the presented work, briefly recovering the main concepts regarding the 
theory introduced by Baier et al. [4].

2  https://www.prismmodelchecker.org

3  http://www.uppaal.org/

https://www.prismmodelchecker.org
http://www.uppaal.org/
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3.1. Reo as a modelling language

Reo  [2, 3] is a graphic-based language used in modelling coordination bet-
ween systems, enabling the modelling of systems which are built by reusing 
fragments of existing software. It is based on channels, where complex coor-
dinators (i.e., Reo models) are compositionally built from simpler ones. These 
complex coordinators are called connectors and compose the modelling lan-
guage’s core. Its main goal is to act as a “glue language”, a language that con-
nects (“glues together”) instances of different components that act together in a 
component based system by orchestrating how these entities interact between 
themselves, providing the model of the code that performs such orchestration. 

Reo focuses on modelling connectors. These structures denote how mo-
delled entities communicate (send/receive data) with each other by means of 
this connector, instead of focusing on particular features of entities that are 
connected, communicate and work together through those connectors. The-
se entities, called component instances in Reo, may be modules of sequential 
code, objects, agents, processes, web services and any other software compo-
nent [2]. The only means of performing such operations are through channel 
ends known by these entities. In other words, entities must communicate 
only with other entities connected in Reo connectors they are part of.

A node in Reo is defined as a logical organization denoting the structure 
of how channel ends are linked to each other in Reo connectors. Nodes com-
posing channel ends in Reo can be either source nodes, sink nodes or mixed 
nodes. Source nodes are nodes that accepts data into the channel (i.e., nodes 
that serves as gateway to data flow into the channel), while sink nodes are 
nodes where data flows out of the channel and mixed nodes are nodes that 
act both as source nodes and sink nodes (not simultaneously).

A Reo channel is designed to tunnel point-to-point communication bet-
ween exactly two different Reo nodes. Each channel has its own previou-
sly defined behavior, however Reo also enables users to formalize their own 
channels. It also enables one to build complex connectors, where the com-
position of Reo channels (predefined or user-provided) are the core of these 
connectors. Figure 1 shows the basic set of connectors as seen in [8].
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Figure 1: Canonical Reo connectors

As an modelling example employing Reo, we introduce the model presented 
in Figure 2. It consists of a Reo connector named Sequencer4. This connector 
models scenarios regarding the sequencing of processes which are intercon-
nected by means of this connector, enabling the study and verification of this 
scenario, along with properties one wish to guarantee regarding how data 
flow between the interconnected entities.

Figure 2: Modelling of the Sequencer in Reo

4  http://reo.project.cwi.nl/v2/\#examples-of-complex-connectors
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3.2  Constraint Automata as Reo’s formal semantics

Constraint Automata (CA) [4] are defined as the most basic operational mo-
dels for Reo. The present work focuses on Constraint Automata as proposed 
by Reo creators. It consists of a simple yet powerful formalism tailored to 
reason about Reo models which is formally defined in Definition 3.2.

Definition 1 (Constraint Automata) 
A Constraint Automaton is a tuple  A=(Q,Names,→,Q_0 ) where 
Q is a finite set of states, denoting possible configurations of A 
Names is a finite set of port names, 
→ : Q × 2Names × DC × Q is the transition relation with DC a set of (propo-
sitional) Data Constraints, and 
Q0⊆ Q is the set of initial states. 

Constraint Automata are understood as a variation of Finite Automata where 
the transitions do not depend only on the value seen in the input, but also 
on data flowing into ports p ∈ Names. By using Constraint Automata as Reo’s 
formal semantics, an automaton’s states stnds for the possible configurations 
(i.e., possible data flow between the entities modelled), the set Names contains 
abstractions of the software components modelled in the Reo connectors, and 
transitions models how the configurations depicted by its states are reached. 

Such formalism proposes grounds for modeling and verifying properties 
regarding coordination mechanisms by usage of formal methods. An example 
of this approach is proposed by Navidpour et al. [14] which applies model 
checking to validate properties of automata specified in temporal logic.

In order to model data flow within Reo connectors, Constraint Automata 
are seen as Timed Data Stream acceptors. A Timed Data Stream (TDS) is a 
pair containing two (possibly infinite) streams that describe, respecitvely, the 
behavior of a given port, namely the data flow and the time instant each data 
item in this flow is seen in the port. An input for an constraint automaton 
is then defined as Θ ∈ TDSNames, Θ containing a TDS for each port p ∈ Names, 
which is formalized as depicted in Definition .

Definition 2 (TDSNames)  TDSNames   is a set containing a TDS for each port 
Ai ∈ Names as

 



164 Erick Grilo, Thiago Cordeiro e Bruno Lopes

O que nos faz pensar, Rio de Janeiro, v.29, n.49, p.157-181, jul.-dez.2021

Therefore, Constraint Automata supports verification of Reo models upon 
specification of structural properties, regarding how its configuration should 
change (based on the automaton’s transitions, which models how data flow 
in Reo channels) and verification of specific situations, regarding a given data 
flow as input for an automaton depicted by Θ, with TDSNames, assuring whether 
a specific scenario can be achieved in the corresponding Reo model.

4. Propositional Dynamic Logic

Propositional Dynamic Logic (PDL)  [6] is a logic tailored to reason about 
programs. It extends multimodal K logic by means of indexing modalities 
with programs. A formula in PDL has the form 〈π〉ϕ which means that “after 
some execution of the program π, ϕ holds, supposing that π halts.” A box 
correspondent formula [π]ϕ means that “after any execution of the program 
π, ϕ holds, supposing that π halts.”

Definition 3 (PDL language)  The language of PDL is defined as 
φ∷=p ∣ ⊤ ∣ ¬φ ∣ φ1∨ φ2 ∣ φ1 ∧ φ2 ∣ φ1→φ2 ∣ φ1↔φ2 ∣ ⟨π⟩φ ∣ [π]φ,
where π∷=α ∣ π1;π2 ∣ π1 ∪ π2 ∣ π⋆ ∣ φ?. 

Let p ∈ Φ, such that Φ is an enumerable set of propositional symbols and α 
∈ Π, where Π is an enumerable set of basic programs. 

Definition 4  A frame for PDL is a tuple F= ⟨W,Rπ⟩ where 
- W is a non-empty set of states; 
- Rα is a binary relation over W, for each basic program a ∈ Π; 
- We can inductively define a binary relation Rπ, for each non-basic 
program π, as follows 

- , 

- , 

- , where denotes the reflexive transitive closure of Rπ , 
- Rφ?={(w,w) ∣ w ∈ W and M, w⊨φ, according to Definition . 

Definition 5  A model for PDL is a pair M=〈F ,V〉, where F is a PDL frame 
and V is a valuation function V: Φ → 2W. 
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The semantical notion of satisfaction for PDL is defined as follows:

Definition 6  Let M= ⟨F,V⟩ be a model. The notion of satisfaction of a for-
mula ϕ in a model M at a state w is denoted by notation M,w⊨ φ and can 
be inductively defined as follows: 

- M, w ⊨ p iff w ∈ V(p) 

- M, w ⊨ ⊤ always; 

- M, w⊨¬ φ iff M, w ⊨ φ ; 

- M, w ⊨ φ1∧ φ2 iff M, w ⊨ φ1  and M, w ⊨ φ2 ; 

- M, w ⊨ φ1∨ φ2  iff M, w ⊨ φ1 or M, w ⊨ φ2 ; 

- M, w ⊨ φ1→ φ2 iff M, w ⊨ φ1 or M,w ⊨ φ2 ; 

- M, w ⊨ ⟨π⟩ φ iff there is w'∈  such that wRπ w' and M,w' ⊨ φ ; 

- M, w ⊨ [π] φ iff for any w'∈ if wRπ w' then M, w' ⊨ φ ;. 

PDL is proved to be sound, complete and decidable. For more details on 
PDL see [7].

5. From Constraint Automata to PDL models

In this section we propose and explain an algorithm which aims to build PDL 
models from Constraint Automata. The proposed approach aims to recover 
and translate each transition in an automaton’s transition relation to senten-
ces in PDL.

5.1. Denoting PDL theories from automata

The first part of the algorithm comprehend the modelling process of automa-
ta transitions into propositional logical formulae. In order to do so, let Φ be 
a set of propositional symbols. The idea is to consider each state of the auto-
maton q ∈ Q, each port name of the automaton n ∈ N and each data constraint 
g ∈ D (with D as a set of data constraints) as a propositional symbol, resulting 
in Q, N, D ⊂ Φ.

The next step is to formalize the automaton’s transition relation ⊧ as logical 
sentences p ∈ Γ. Taking advantage of the automaton’s transition relation as the 
notation  (we recover the transition notation introduced by Baier et 
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al. [4]), an automaton’s single transition may be defined as (q0∧⋀gi∈g  gi ↔⟨t⟩ q1), 
denoting the same idea behind the firing of a transition in Constraint Automa-
ta: if the automaton is in state q0 and the data constraint g (which may be com-
posed of conjunction of zero or more propositional formulae gi), then exists a 
transition t (the transition currently being modelled) which from  q0 reaches q1.

However, this approach still misses the point that, in order for a transition 
to fire in constraint automata, not only its data constraint must be satisfied, 
but the ports denoted by its set of port names are the only ones that must have 
data flowing at the time the transition is to be fired. Therefore, the procedure 
also needs to add this information in the derived formula. This is acheived as 
follows: port names pinN of the automaton which are in the transition t may 
be depicted as pg and the remainder as png , the ports which does not relate to 
the transition being evaluated. This can be rewritten as 
Then, we add this new piece of information to the first proposed resulting 
formula, which now is . The set of logi-
cal sentences Γ can be defined as follows.

There is still a situation which the above definition does not capture: the case 
where there is no transition available to be fired, resulting in an invalid confi-
guration of the automaton. The corresponding PDL model must capture this 
scenario. We add a formula modelling each transition ti that can’t be fired. Γ 
is now rewritten then as below.

Definition 7 Let Γ as the aforementioned set. The resulting set of formulae 
denoting all automata’s transitions and how they behave is achieved by the 
following definition . 

Γ then models all transitions of a single constraint automaton, considering its 
initial state (sti), its corresponding context regarding transition firing (gi), the 
ports p ∈ N that must have data flowing (pi) and the remainder of N which 
must not have any data flowing at the moment (pni). In what follows we brie-
fly introduce and discuss the proposed algorithm.
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Algorithm 1 describes each step executed in order to obtain Γ from a cons-
triant automaton. The algorithm expects as input a constraint automaton, 
and from its transition relation, it builds Γ from the extracted information, 
executing the following (simplified) steps:

1. Initialization of the logical sentence (denotihg the result of the evalua-
tion of the current transition);

2. Assign the transition’s origin state to the sentence;
3. Iterate over the transition’s whole data constraint, adding them to a 

conjunction with the sentence;
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4. Iterate over the transition’s set of port names, adding them to a con-
junction with the sentence;

5. Iterate over the automaton’s set of port names; check whether a given 
port is not in the transition’s set of port names, and add it to a con-
junction with the sentence;

6. Add the biconditional with the symbol denoting the existence of a 
transition ti that reaches a state qy ; 

7. Add the stopping condition considering an rejecting scenario (no tran-
siitions could be fired).

5.2. Formalizing automata input: TDSNames in PDL

The second part of the algorithm aims to formalize the notion of inputs for 
constraint automata in PDL as described in Section 3. From Baier et al. [4], 
recall that Constraint Automata are seen as TDS acceptors. We define a func-
tion, Val: N×W×N→D, as a function that given a port name of the automaton A, 
a state w from the PDL model, and a natural number n denoting the index of 
the time stamp of TDSNames   it returns the current data assignment of the port A. 
Its definition is summarized in Algorithm 2.

Val is formalized as an auxiliary function that will be used in the process of 
formalizing TDSNames in PDL. We use the valuation function as depicted in De-
finition , relying on Val, in order to implement TDSNames in PDL. The valuation 
function then will have its semantics directed in evaluate whether the data 
flowing in a given set of ports of the constraint automaton (in a given time 
instant) satisfy any transition in the transition set Γ. Such function is denoted 
by Equation 1.
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5.3. Soundness Proofs

This Section presents the soundness proof of the aforementioned approach. 
It shows that for any Constraint Automata and a Θ ∈ TDSNames there exists a 
PDL model.

Theorem 1 (The translation of a CA to a PDL model using Algorithm 1 
preserves the semantics of the execution of the CA over Θ modelled as 
in Equation 1) 

The output of Algorithm 1 is a set Γ of formulae. Let  where γi ∈ 
Γ and |Γ|=n Let π the composition of all PDL programs extracted from Γ such 
that if a transition ti is sequenced by tj we have that ti ; tj  and if ti is an alterna-
tive transition from the same state to tj we have that ti ⋃ tj. 

So we build a PDL model such that M=⟨W,Rπ,V⟩ corresponds to Definition  
over π and let w 0 ∈ V(s0) (according to Equation (1)). It is needed to show 
that the state notion from the CA is preserved in the model M (cases 1 and 
2), that the ports constraints over Θ are preserved (case 3) and that the model 
validates only what is valid on the CA (case 4).

Proof 1 The four cases are considered.

Case 1: While a constraint automaton is running, whenever its current state 
is qi ∈ Q, the propositional symbol si ∈ Φ will have its truth value as true in the 
PDL model’s current state w ∈ W, and ∀sj ∈ Φ, j ≠ i  will have their truth values 
as false.

Given q0 ∈ Q a initial state of the constraint automaton, suppose that there 
is a corresponding initial state in the equivalent PDL model w0 ∈ W, where w0 

∈ W and ∀sj ∈ Φ, j ≠ i , sj ∉ V(w0), according to Equation (1).
If there is a firing transition of the automaton originating in a state qx ∈ Q 

bounded to a state qy ∈ Q, from Γ there is at least one execution of a program 
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leading to a state w’∈ W which after its execution, sy will hold and ∀sj ∈ 
Φ, j ≠ y, sj ∉ V(w') also holds. This follows from the Algorithm  1 and from 
Equation (1).

Case 2: let → be the transition relation of the constraint automaton. Given a 
PDL state wi ∈ W, there will be only relations wiRwji, wj∈ W that corresponds to 
the automaton’s transition relation →.

Given q0 ∈ Q an initial state of the automaton, there is a initial state in the 
corresponding PDL model q0 ∈ W, where si ∈ V(w0) and ∀sj ∈ Φ, j ≠ i. If there is a 
transition →i∈ → from q0 to qy, then there is a relation between two PDL states 
from w to w’∈W by means fo the PDL program , with M,w’⊧ g and M,w' ⊭ 
pi, where g ∈ → i and pi  is not a subformula of g, according to lines 4 to 14 
in Algorithm 1, which define the existence of the transition and that it only 
fires if its corresponding data constraint g holds, and its associated set of port 
names are the only port in the automaton where data flows in the moment of 
this transition’s firing, and from Equation (1).

If there is a reachable state by the transition previously defined → i, then 
there is a state qx ∈ Q of the automaton and a state wx ∈ W of the corresponding 
PDL model, where si ∈ V(wx) and ∀sj ∈ Φ, j ≠ i, sj /∈ V (wx). If there is a transition 
→ i  from qx to qy, then there is a transition by means of  to a state w’∈ W, 
where M,w’⊧ g and w' ∉ pi

This case is complete when there is no more transitions in →. Line 21 of 
Algorithm 1 also guarantees the rejection of non accepting input, in the case 
during its execution, no transitions could be fired by the automaton. 

Case 3: Let N the set of port names of the automaton and N’∈ t with t ∈→. In 
order to guarantee that the ports depicted by the port names pi ∉ N' will not 
have data flow (enabling t’s firing), the following property must be satisfied: 
pi ∈ N ≠ p'i ∈ N', for any pi and p'i.

Let pi ∈ N and p'i ∈ N' any port name. If pi ≠ p'i, the propositional symbol 
corresponding to pi is negated and included in the formula as follows: ≠ pi.

All combination of ports pi e p'i are iterated, and if pi ≠ p'i, the negation of 
the propositional symbol corresponding to the port name pi is added to the 
formula as pi.

After iterating all possible port names combinations, the ports used in 
each transition are the only ones in the formula.
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Case 4: Let Θ ∈ TDSNames. The behavior of the automaton must correspond to 
the behavior of the generated PDL model based on the same input Θ. In short, 
the model’s behavior must be the same as the base automaton.

Suppose N is the set of port names involved with a transition t ∈ →. Also, 
let w be the initial state of the corresponding PDL model, w←s0. In order to 
advance to another state, there must exist a state w’ that is reachable b ya tran-
sition. In other words, given w’∈ W, if ∃ w’, with w Rt w', this state is reachable 
according to the TDS Θ if  the function Val (pi ,w',0) returns a value, then 
exists a state w’ which denotes a state of the automaton.

Although the model is potentially infinite, from any state it is possible to 
reach (co-inductively) an initial state.

Hence the behaviour of the CA is preserved in M 

5.4  Implementation of the algorithm

The algorithm proposed in Section 5.1 and Section 5.2 is implemented in C. 
Its source code may be found on https://github.com/ThiagoUff/CA_PDL. The 
implementation is supplied with a text file containing the structure of the 
constraint automaton, followed by a parsing process of this file in order to 
validate its structure. A valid file returns a text file containing Γ’s structure as 
proposed by the algorithm.

 
Figure 3: Constraint automaton of a Sequencer circuit  
(transitions labels are ommited due to lack of space)

https://github.com/ThiagoUff/CA_PDL
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5.5. Usage example

The Following example recovers the Reo circuit introduced in Figure 2 as 
denoted by the automaton in Figure 3. This automaton has 27 states, 7 Ports 
and 68 transitions with 142 Data Constraints, leading to 166 logical symbols. 
In what follows, the transitions of the automaton are transformed into logic 
sentences by iterating over the automaton’s set of states and, for each state q 
∈ Q, it applies the proposed algorithm with each transition which departing 
state is q.

 
1. state: q0  

2. state: q1

3. state: q2

4. state: q3
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5. state: q4

	
6. state: q5
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7. state: q6

	
8. state: q7

	
9. state: q8

	
10. state: q9
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11. state: q10

	
12.state: q11

	
13. state: q12
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14. state: q3

	
15. state: q4

	
16. state: q15

	
17. state: q16
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18. state: q17

	
19. state: q18
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20. state: q19

	
21. state: q20

	
22. state: q21

	
23. state: q22

	
24. state: q23
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25. state: q24

	
26. state: q25

 	
27. state: q26

	

Each one of the original transitions of the automaton were transformed in a 
PDL sentence, following the proposed algorithm in Section 5.

6.  Conclusions and further work

Formalizing and validating Reo circuits may bring some advantages regarding 
modelled systems in Reo. The proposed approach introduces a framework to 
reason about Reo circuits by means of Constraint Automata and Propositio-
nal Dynamic Logic, creating PDL sentences for each transition in the circuit’s 
corresponding automaton. Therefore Reo circuits can be seen as PDL models, 
which verification can rely on known techniques for validating PDL models, 
such as model checking [9], or even using PDL as a query language for Reo 
models, in an approach similar to the one presented by Tuominen [16].

Future works may be directed in tailoring a specific logic to reason about 
Reo circuits. It aims to lead to a logic that captures specific Reo properties, 
enabling to check whether Reo models are free of deadlock or properties 
regarding how data flow in a model’s nodes. The implementation of a Gra-
phical User Interface that enables the user to generate PDL models from Reo 
connectors and specify properties to be validated is also a direction that this 
work may be directed to.
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